Feature | September 13, 2013| Dave Fornell

Going Beyond 3-D in Cardiovascular Ultrasound: The Next Step to Improve Reproducibility, Speed

There are two main issues facing clinical practice today, including lower reimbursements and the need to see more patients, which combined calls for technology that can improve efficiency and increased patient throughput. In addition, there are inherent issues with traditional 2-D ultrasound imaging technology, including that the quality of image acquisition relies on the skill and experience of the operator. Also, 2-D images are flat slices, so measurements are dependent on the transducer angle, section of the anatomy chosen to take a measurement, and again on user experience and skill level. Combined, this leads to issues with reproducibility. 
 
There have been several technological advancements to help address these issues, the biggest of which is 3-D echo. While 3-D echo adoption started out slow because it was time-consuming to use, today’s systems offer much improved speed and automation. It used to take 30 minutes to an hour to create cardiac images manually. But, as faster computer processing became available and vendors streamlined workflow and automated steps, today it takes less than 30 seconds to create the same cardiac views.
 
The use of 3-D echo can help improve the accuracy and reproducibility of cardiac quantification. The technology has the advantage of removing the inter-operator variability by imaging whole volume datasets of the heart, so specific images or organ views can be extracted and reconstructed in any position, similar to CT or MRI datasets. Also, because a volumetric dataset is captured, exam times can be shortened, instead of spending time trying to get just the right angle for a 2-D slice view. Cardiac quantification can also be improved by measuring the entire heart or ventricle, rather than just slices of it. New software also automates this quantification.
 
At the American Society of Echocardiography’s (ASE) 24th Annual Scientific Sessions held in June, it was evident there is growing adoption of 3-D echo. The main trends in 3-D focused on increased automation to streamline and the collection of more quantitative data from images. 
 
Among the new technologies discussed was what I consider the next step in 3-D echo ­— the use of artificial intelligence to immediately identify the anatomy being imaged and then extract the views required for automated quantification and clinical diagnosis. While the technology is cool from the sci-fi standpoint, there are many who will wonder why we need this and stand by the belief that only a highly skilled echocardiographer should be doing this job. I would agree, but in light of increasing numbers of patients entering the system under healthcare reform and as the baby boomers continue to age, this type of automation may help speed exams to timeframes never before possible.
 
Philips Healthcare has developed smart anatomical imaging software, which it released commercially Aug. 30 with the introduction of its new Epiq premium ultrasound system. It addition to being able to identify cardiac anatomy on its own with out human interface, the system can identify anatomy throughout the body for use in OB/GYN and general imaging. This might help in leveling the playing field between experienced echo and ultrasound technologists and novice ultrasound system users. The need for this type of technology is becoming greater as the number of patients in the U.S. healthcare system expands, while at the same time as the proliferation of point-of-care ultrasound systems is rapidly expanding into all areas of medicine.
 
I suspect this type of smart anatomical imaging will be among the top highlights of new medical imaging advances at the Radiological Society of North America (RSNA) meeting in December. 

Related Content

Konica Minolta, Sonimage HS1, version 3.0, compact ultrasound
Technology | Cardiovascular Ultrasound| April 28, 2016
Konica Minolta introduced the latest version of the Sonimage HS1 compact ultrasound system, enabling improved image...
HHS, Health and Human Services, proposed rule, MACRA, physician quality payment
News | Business| April 27, 2016
The Department of Health and Human Services (HHS) issued a proposal to align and modernize how Medicare payments are...
News | Clinical Decision Support| April 27, 2016
April 27, 2016 — Imaging Advantage LLC, platform provider of cloud-based radiology service, announced the launch of a
mobile health apps, FTC, compliance tool, business guidance, privacy
News | Mobile Devices| April 25, 2016
The Federal Trade Commission (FTC) announced that it has created a Web-based guidance tool for developers of health-...
Siemens Sensis Vibe, hemodyanamics system

Siemens released the Sensis Vibe hemodyanamics system at ACC.16. The newer system offers better integration of cath lab data into cath lab reports and the electronic medical record (EMR).

Feature | ACC| April 25, 2016 | Jon Brubaker, MBA, RCVT, Tom Watson, BS, RCVT, and Sabrina Newell MS, RCS
There were several trends seen in new cardiovascular technologies showcased on the expo floor at the 2016 American...
echocardiography, cardiac ultrasound, E95, GE Healthcare

GE's cSound 4-D echo showing the mitral valve open with chordae tendineae and papillary muscles.

Feature | Cardiovascular Ultrasound| April 21, 2016 | Jeff Zagoudis
Healthcare institutions are trying to drive productivity by increasing patient throughput while still maintaining a
News | Ultrasound Transesophageal echo (TEE)| April 21, 2016
CS Medical announced the release of their newest product designed to aid in the circle of care for transesophageal echo...
ACR, American College of Radiology, MEDCAC, peripheral arterial disease, PAD, seniors
News | Peripheral Arterial Disease (PAD)| April 18, 2016
The American College of Radiology (ACR), as a member of a coalition of leading medical societies, provided peripheral...
FFR-CT, heartflow
Feature | CT Angiography (CTA)| April 15, 2016 | Jeff Zagoudis
Fractional flow reserve-computed tomography (FFR-CT) is still in the early stages of clinical implementation in the U
Inventory management, analytics software, cardiology

An example of a page from GE Healthcare's Cloud analytics software, showing percentage use of a hospital's operating rooms by procedure type and showing a breakdown of surgical supplies in drill down for one of these procedures.

Feature | Analytics Software| April 15, 2016 | Dave Fornell
With all areas of healthcare now migrating to electronic medical record (EMR) platforms, the data they contain can be
Overlay Init