Feature | March 15, 2011| Jim Katzaroff

Producing Medical Isotopes in the U.S.: A Worthy Goal for the Biotech Industry

Much of nuclear imaging depends on a steady supply of an isotope called molybdenum-99 (Mo-99). A byproduct of nuclear fission, Mo-99 is used to produce another radioactive substance, technetium-99m, which is employed in more than 16 million nuclear imaging procedures every year in the United States alone. These include everything from sentinel node biopsies in cancer surgery to bone scans and cardiac stress tests.

Unfortunately, the supply of Mo-99 and other radioisotopes has been unreliable at best. All of the Mo-99 used in the United States is imported, with the main source being the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. A shutdown for repairs in May 2009 contributed to a global radioisotope shortage. While the reactor has been back in operation since August 2010, it is scheduled for closure in 2015.

The shortage showcases a critical gap in the supply chain. Although the United States has many domestic reactors that could produce the radioisotopes, they do not have the necessary processing facilities or the capacity to take time away from other projects to produce Mo-99. As a result, new production strategies are desperately needed. For some procedures, there’s simply no alternative, and without a reliable domestic supply of isotopes, nuclear medicine would severely limit doctors’ ability to diagnose and treat many diseases.

Already, some clinicians have switched to using thallium-201, which is still commonly produced and used in heart stress studies. Additionally, physicians are finding it harder to get their hands on iodine-131, another radioisotope that is used to treat thyroid cancer, Graves’ disease and hyperthyroidism. Alternatives for many procedures exist, including computed tomography (CT) and positron emission tomography (PET) scanning, using radioisotopes not made in nuclear reactors, but these have drawbacks ranging from increased cost and greater radiation burden to lower image quality.

New Tracers, New Sources

In response to this ongoing crisis, strategies are being formulated to increase radioisotope production in the United States. These plans include developing a way to produce Mo-99 and other radioisotopes not with a nuclear reactor, but rather with newly designed compact systems. Currently these strategies are in the planning stages, including at Kennewick, Washington-based Advanced Medical Isotope Corp. Should such plans work out, it may be possible to produce a wider variety of radioisotopes in addition to Mo-99, each with its own specific medical application.

One such radioisotope worth producing in greater amounts within the United States is actinium-225, whose daughter bismuth-213 is used for advanced research in therapy of leukemia and other cancers and also holds promise for treating human immunodeficiency virus (HIV). Additionally useful in cancer diagnosis and staging is carbon-11, which has been employed as a radiotracer in PET scans to study both normal and abnormal brain functions related to various drug addictions. It is also used to evaluate diseases such as Alzheimer’s. This past February, a research paper in the journal Archives of Neurology reported the use of carbon-11 PET scans to detect in vivo fibrillar beta amyloid in older adults.

Further tools in the radioisotope toolbox include cobalt-57, which is used for gamma camera calibration, as a radiotracer in research, and as a source for X-ray fluorescence spectroscopy; and copper-64, which has been employed in PET scanning, planar imaging and single photon emission computed tomography (SPECT) imaging, as well as dosimetry studies, and cerebral and myocardial blood flow. It is also used in stem cell research and cancer treatments.

Fluorine-18 is the primary PET imaging isotope and is used for cancer detection, heart imaging and brain imaging. Last year, in a clinical trial at Johns Hopkins University, a PET agent built around fluorine-18 readily and safely distinguished the brains of Alzheimer’s disease patients from those of healthy volunteers. The study authors concluded in the June 2010 Journal of Nuclear Medicine that their agent could lead to better ways to distinguish Alzheimer’s from other types of dementia, track disease progression and develop new therapeutics to fight the memory-ravaging disease.

Other useful examples include germanium-68, which is being used for the study of thrombosis and atherosclerosis, PET imaging, the detection of pancreatic cancer and attenuation correction. Indium-111 is used for infection imaging, cancer treatments and tracer studies, while iodine-123 is used in brain, thyroid, kidney and myocardial imaging, cerebral blood flow and neurological disease. Its close relative, iodine-124, meanwhile, is a radiotracer used in PET imaging and to create images of the human thyroid. Its other treatment uses include apoptosis, cancer biotherapy, glioma, heart disease, mediastinal micrometastases and thyroid cancer.

Iodine-131 is useful in the diagnosis and treatment of thyroid disease, including cancer, while strontium-82 and its daughter rubidium-82 are used as a myocardial imaging agent for the early detection of coronary artery disease, PET imaging and blood flow tracers. Finally, as mentioned earlier, thallium-201 is used in clinical cardiology, heart imaging, myocardial perfusion studies and cellular dosimetry. And this abbreviated list barely does justice to the variety of potentially useful isotopes.

Editor’s Note: Jim Katzaroff is chairman and CEO of Kennewick, Washington-based Advanced Medical Isotope Corp. (www.isotopeworld.com). The company is engaged in the production and distribution of medical isotopes. He believes it is a moral imperative to provide an adequate supply of life-saving medical isotopes on American soil. He said doing so will save tens of millions of dollars for the healthcare market, and the lives that might ultimately be saved might make it a worthy endeavor. He can be reached at [email protected]

Related Content

UltraSPECT, Xpress3.Cardiac, nuclear imaging, RWJPE, New Jersey, Robert Wood Johnson Physician Enterprise
News | SPECT Imaging| July 25, 2016
UltraSPECT Inc. announced recently that Robert Wood Johnson Physician Enterprise (RWJPE), a multi-specialty, community-...
ASNC, SNMMI, PET standard, Pet cardiac imaging, PET nuclear imaging, perfusion imaging

An example of a cardiac PET-CT imaging, should a color coded image of the left ventricle to help assess myocardial perfusion to detect ischemia using a Siemens scanner.

News | Nuclear Imaging| July 19, 2016
 
Cell>Point, license agreement, China, United Eastern Pharmaceutical, Oncardia imaging agent
News | Radiopharmaceuticals and Tracers| July 07, 2016
July 7, 2016 — Cell>Point announced in mid-June it has entered into an...
SNMMI, appropriate use criteria, AUC, PAMA, qualified provider-led entity, PLE
News | Clinical Decision Support| June 27, 2016
The Society of Nuclear Medicine and Molecular Imaging (SNMMI) has been named a qualified provider-led entity (PLE)...
Philips, SNMMI 2016, Vereos digital PET/CT, time-of-flight, IntelliSpace 8.0, nuclear imaging
News | Nuclear Imaging| June 14, 2016
Philips announced it would be showcasing a variety of nuclear imaging solutions at the Society of Nuclear Medicine and...
Siemens Healthineers, SNMMI '16, molecular imaging, syngo.via, Biograph Horizon PET/CT, mobile configuration
Technology | Nuclear Imaging| June 09, 2016
At the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), Siemens Healthineers will...
nuclear medicine, global market, radiopharmaceuticals, MEDraysintell, SNMMI 2016
News | Nuclear Imaging| June 08, 2016
MEDraysintell estimates that the global market for nuclear medicine (radiopharmaceuticals) reached $4.3 billion in 2015...
cardiac PET, myocardial perfusion, PET-CT, cardiac perfusion

A PET-CT cardiac perfusion exam from a Siemens Biograph scanner. The black and white areas of the image show the CT imaging of the anatomy. The colored portion shows the PET overlay on the myocardium and is color-coded to show tracer uptake values. This can show areas of the heart muscle where there are perfusion defects cause by infarcts or coronary artery blockages due to a heart attack and help determine the severity of the ischemia.

Feature | PET Imaging| June 03, 2016 | Dave Fornell
Positron emission tomography (PET) is a nuclear imaging technology (also referred to as molecular imaging) that enabl
Medic Vision, SafeCT-29, NEMA XR-29, Smart Dose, computed tomography
Technology | Computed Tomography (CT)| May 31, 2016
Medic Vision Imaging Solutions Ltd. announced the U.S. Food and Drug Administration (FDA) clearance of SafeCT-29 to...
Technology | Cardiac Imaging| May 18, 2016
May 18, 2016 — The Intersocietal Accreditation Commission (IAC) recently announced its launch of the IAC QI Self-Asse
Overlay Init