Feature | September 06, 2013

Researchers Aim to Use Light — Not Electric Jolts — to Restore Healthy Heartbeats

Johns Hopkins-led research team explores the field of optogenetics

September 6, 2013 — When a beating heart slips into an irregular, life-threatening rhythm, the treatment is well known: deliver a burst of electric current from a pacemaker or defibrillator. But because the electricity itself can cause pain, tissue damage and other serious side-effects, a Johns Hopkins-led research team wants to replace these jolts with a kinder, gentler remedy: light.

In a paper published Aug. 28, 2013, in the online journal Nature Communications, five biomedical engineers from Johns Hopkins and Stony Brook universities described their plan to use biological lab data and an intricate computer model to devise a better way to heal ailing hearts. Other scientists are already using light-sensitive cells to control certain activities in the brain. The Johns Hopkins-Stony Brook researchers say they plan to give this technique a cardiac twist so that doctors in the near future will be able to use low-energy light to solve serious heart problems such as arrhythmia.

“Applying electricity to the heart has its drawbacks,” said the project’s supervisor, Natalia Trayanova, the Murray B. Sachs professor of biomedical engineering at Johns Hopkins. “When we use a defibrillator, it’s like blasting open a door because we don’t have the key. It applies too much force and too little finesse. We want to control this treatment in a more intelligent way. We think it’s possible to use light to reshape the behavior of the heart without blasting it.”

To achieve this, Trayanova’s team is diving into the field of optogenetics, which is only about a decade old. Pioneered by scientists at Stanford, optogenetics refers to the insertion of light-responsive proteins called opsins into cells. When exposed to light, these proteins become tiny portals within the target cells, allowing a stream of ions — an electric charge — to pass through. Early researchers have begun using this tactic to control the bioelectric behavior of certain brain cells, forming a first step toward treating psychiatric disorders with light.

In the Nature Communications paper, the researchers reported that they had successfully tested this same technique on a heart -- one that “beats” inside a computer. Trayanova has spent many years developing highly detailed computer models of the heart that can simulate cardiac behavior from the molecular and cellular levels all the way up to that of the heart as a whole.

As detailed in the journal article, the Johns Hopkins computer model for treating the heart with light incorporates biological data from the Stony Brook lab of Emilia Entcheva, an associate professor of biomedical engineering. The Stony Brook collaborators are working on techniques to make heart tissue light-sensitive by inserting opsins into some cells. They also will test how these cells respond when illuminated.

In Trayanova’s own lab, her team members will use this model to conduct virtual experiments. They will try to determine how to position and control the light-sensitive cells to help the heart maintain a healthy rhythm and pumping activity. They will also try to gauge how much light is needed to activate the healing process. The overall goal is to use the computer model to push the research closer to the day when doctors can begin treating their heart patients with gentle light beams. The researchers say it could happen within a decade.

After the technology is honed through the computer modeling tests, it could be incorporated into light-based pacemakers and defibrillators.

For more information: www.nature.com/ncomms

Related Content

Niobe remote magnetic navigation system, cardiac abltion, Robert Wood Johnson University Hospital, New Jersey, 500 procedures
News | Robotic Systems| October 25, 2016
Stereotaxis Inc. and Robert Wood Johnson University Hospital (RWJUH) announced that Zyad Younan, M.D., has completed...
UAB, University of Alabama at Birmingham study, stroke prevention, non-valvular atrial fibrillation, NVAF
News | Atrial Fibrillation| October 25, 2016
A recent study from University of Alabama at Birmingham (UAB) researchers published in PLOS ONE compares different...
iSmartweaR, smart clothing, jIndustrial Technology Research Institute, ITRI, wearable heart monitoring

An example of an iSmartweaR shirt that can monitor patient vital signs without the need for electrode wires.

News | Wearable Sensors| October 24, 2016
October 24, 2016 — Conventional smart clothing uses conductive fibers or rubber as sensing electrodes, and cardiac el
Inventory management, Cardinal, RFID inventory tracking, cath lab inventory
Sponsored Content | Whitepapers | Inventory Management| October 18, 2016
As healthcare moves into the era of bundled payments, providers need to be especially focused on ensuring delivery of
Medtronic, FIRE AND ICE trial, Arctic Front, cryoballoon catheter ablation, radiofrequency RF ablation, study results, Asia Pacific Heart Rhythm Society Scientific Sessions
News | Ablation Systems| October 17, 2016
Medtronic plc last week unveiled new health economic analysis data from the FIRE AND ICE trial that favor cryoballoon...
Medtronic, FDA approval, MRI, MR-conditional scanning, cardiac devices
Technology | EP Lab| October 13, 2016
Medtronic plc is the first company to receive U.S. Food and Drug Administration (FDA) approval for its suite of cardiac...
News | Renal Denervation| October 11, 2016
Awards from the National Institutes of Health’s Common Fund are supporting research on the peripheral nervous system,...
ZipLine Medical, Zip Surgical Skin Closure, cath lab time savings, PACE study
News | EP Lab| October 10, 2016
October 10, 2016 — ZipLine Medical Inc.
St. Jude Medical, Ensite Precision cardiac mapping system, full European market release
News | EP Mapping and Imaging Systems| October 06, 2016
St. Jude Medical Inc. announced a full market release of its EnSite Precision cardiac mapping system and new Sensor...
Overlay Init