Feature | September 06, 2013

Researchers Aim to Use Light — Not Electric Jolts — to Restore Healthy Heartbeats

Johns Hopkins-led research team explores the field of optogenetics

September 6, 2013 — When a beating heart slips into an irregular, life-threatening rhythm, the treatment is well known: deliver a burst of electric current from a pacemaker or defibrillator. But because the electricity itself can cause pain, tissue damage and other serious side-effects, a Johns Hopkins-led research team wants to replace these jolts with a kinder, gentler remedy: light.

In a paper published Aug. 28, 2013, in the online journal Nature Communications, five biomedical engineers from Johns Hopkins and Stony Brook universities described their plan to use biological lab data and an intricate computer model to devise a better way to heal ailing hearts. Other scientists are already using light-sensitive cells to control certain activities in the brain. The Johns Hopkins-Stony Brook researchers say they plan to give this technique a cardiac twist so that doctors in the near future will be able to use low-energy light to solve serious heart problems such as arrhythmia.

“Applying electricity to the heart has its drawbacks,” said the project’s supervisor, Natalia Trayanova, the Murray B. Sachs professor of biomedical engineering at Johns Hopkins. “When we use a defibrillator, it’s like blasting open a door because we don’t have the key. It applies too much force and too little finesse. We want to control this treatment in a more intelligent way. We think it’s possible to use light to reshape the behavior of the heart without blasting it.”

To achieve this, Trayanova’s team is diving into the field of optogenetics, which is only about a decade old. Pioneered by scientists at Stanford, optogenetics refers to the insertion of light-responsive proteins called opsins into cells. When exposed to light, these proteins become tiny portals within the target cells, allowing a stream of ions — an electric charge — to pass through. Early researchers have begun using this tactic to control the bioelectric behavior of certain brain cells, forming a first step toward treating psychiatric disorders with light.

In the Nature Communications paper, the researchers reported that they had successfully tested this same technique on a heart -- one that “beats” inside a computer. Trayanova has spent many years developing highly detailed computer models of the heart that can simulate cardiac behavior from the molecular and cellular levels all the way up to that of the heart as a whole.

As detailed in the journal article, the Johns Hopkins computer model for treating the heart with light incorporates biological data from the Stony Brook lab of Emilia Entcheva, an associate professor of biomedical engineering. The Stony Brook collaborators are working on techniques to make heart tissue light-sensitive by inserting opsins into some cells. They also will test how these cells respond when illuminated.

In Trayanova’s own lab, her team members will use this model to conduct virtual experiments. They will try to determine how to position and control the light-sensitive cells to help the heart maintain a healthy rhythm and pumping activity. They will also try to gauge how much light is needed to activate the healing process. The overall goal is to use the computer model to push the research closer to the day when doctors can begin treating their heart patients with gentle light beams. The researchers say it could happen within a decade.

After the technology is honed through the computer modeling tests, it could be incorporated into light-based pacemakers and defibrillators.

For more information: www.nature.com/ncomms

Related Content

Feature | Heart Failure| September 01, 2015
Automated alerts for excess fluid accumulation in the lungs did not improve outcomes for heart failure patients with...
News | Atrial Fibrillation| September 01, 2015
The first-ever two-year outcomes from the Global Anticoagulant Registry in the Field - Atrial Fibrillation (GARFIELD-AF...
Medtronic, sudden cardiac death, SCD, DISCOVERY, Oregon SUDS, study, ICDs, gene
News | Sudden Cardiac Arrest| August 31, 2015
Medtronic plc announced first-of-its-kind findings from two independent studies that have identified a gene associated...
News | Heart Failure| August 28, 2015
August 28, 2015 — BioControl Medical said it has completed enrollment in its INOVATE-HF (INcrease Of VAgal TonE in He
BioSig Technologies, research agreement, UCLA, Pure EP System, EP lab, ventricular tachycardia model, VT
Technology | EP Lab| August 20, 2015
BioSig Technologies announced it has signed a sponsored research agreement with the regents of the University of...
Biotronik, BioCONTINUE study, CRT-D, defibrillator, cardiac resynchronization therapy device, heart failure, first replacement
News | Cardiac Resynchronization Therapy Devices (CRT)| August 17, 2015
Biotronik announced that the first patient has been enrolled in the BioCONTINUE clinical trial (BIOtronik study to...
CMS, additional participants, Bundled Payments for Care Improvement initiative, Medicare, eipsodes of care
News | Business| August 17, 2015
The Centers for Medicare & Medicaid Service (CMS) announced that over 2,100 healthcare facilities have agreed to...
Biotronik, BIOGUARD-MI Study, BioMonitor, cardiac arrhythmias, early detection, remote monitoring
News | Implantable Cardiac Monitor (ICM)| August 11, 2015
Biotronik announced the first enrollments in the BIO|GUARD-MI1 study. The study will investigate whether the early...
Boston Scientific, Preventice Solutions, equity investment, sales cooperation agreement, cardiac monitoring

BodyGuardian product family. Image courtesy of Preventice Solutions.

News | Remote Monitoring| August 11, 2015
Boston Scientific has become a significant shareholder and will become the exclusive worldwide sales and marketing...
Overlay Init