Feature | November 26, 2013| Simon Häger

Leverage ACR’s Dose Index Registry by Utilizing a Dose Monitoring Solution

The radical increase in patient exposure to radiation from medical imaging over the last two decades has created great concerns about its inherent risks. Today, one of the highest priorities on many hospital agendas is to break this trend by achieving improved control of the radiation exposure to their patients. 
 
The collection and monitoring of patient radiation dose is currently limited or non-existent in many imaging facilities which has provoked reaction by government agencies and state legislatures to establish laws and programs to collect and report on dose. There is no doubt that this has led the medical imaging community to take action to comply with these initiatives and gain a better control of the radiation exposure to their patients. 
 
ACR’s Dose Index Registry
ACR’s Dose Index Registry (DIR), a prominent data registry in the United States, allows facilities to compare their computed tomography (CT) dose indices to regional and national values. Information related to dose indices for all CT exams is collected, anonymized, transmitted, and stored in this data repository. Every six months, institutions receive feedback reports comparing their results (by body part and exam type) against aggregate values in an attempt to provide hospitals a way of benchmarking dose values.[1]  Unfortunately, the external comparison itself is not enough; appropriate action must be taken from within the facility to reduce and achieve better control of radiation exposure to make sure laws and the ALARA (as low as reasonably achievable) dose principals are followed. 
 
Utilizing a Dose Monitoring Solution
When an outlier in dose values for a specific procedure is identified in a feedback report, the next step is to determine the underlying reason for the deviation. The focus must move from external comparison to internal investigation. 
 
“Utilizing a dose monitoring solution is the most efficient way to collect and visualize the huge volume of data concerned with dose reporting,” said Ian Judd, product manager for Sectra DoseTrack. “Any solution should accept data from multiple sources such as EMR, RIS, modalities and PACS and provide analytical tools to allow for drill-down into details about the specific procedure and the underlying cause for exceptions.”
 
He said it is only by gathering data from multiple sources within the imaging arena that an effective dose reduction methodology can be implemented. When this is accomplished, appropriate dose reducing actions including adjusting protocols, configuring modalities and providing additional training to staff will be successful.
 
“A dose monitoring solution should allow for comparisons on multiple levels such as between X-ray equipment, staff, and departments to determine the reason why each exposure occurred,” Judd said. “Without the ability to look at the complete patient journey from initial referral to the finalized report, the customer will never truly be able to manage patient dose. The actual dose received is a single moment in time, however, there are many other key touch points in the care of the patient, which if not also analyzed, will never allow true dose reduction to be achieved. 
 
He said a dose tracking system provides confirmation and confidence in operating a quality, professional service. This confidence and proof can then be used to improve confidence in the level of service to referring clinicians and patients.
 
Both the Joint Commission (JCAHO) and U.S. Food and Drug Administration (FDA) have provided recommendations on capturing and transmitting dose information in the patient’s electronic medical record (EMR) as well as to a national dose registry.[2,3] Synergies can be achieved by utilizing a dose monitoring solution as a centralized portal to collect and send dose data to EMR’s and the DIR. 
 
Participating in the DIR provides an excellent path for imaging institutions to receive external feedback on how they perform against other facilities. However, without corrective action, that feedback is of limited value. By utilizing a dose monitoring solution, the institution can leverage the feedback from the DIR to internally investigate the underlying reasons for outliers. Only then, can appropriate actions be taken to reduce the overall radiation exposure to patients. 
 
Editor's note: The author Simon Häger is a Sectra DoseTrack team member. 
 
References
1. The American College of Radiology, "Dose Index Registry," 23 10 2013. [Online]. Available: http://www.acr.org/Quality-Safety/National-Radiology-Data-Registry/Dose-Index-Registry.
2. The Joint Commission on Accreditation of Health Organizations, "Sentinel Event Alert 47," The Joint Commission on Accreditation of Health Organizations, 2011.
3. U.S. Food and Drug Administration, "Initiative to Reduce Unnecessary Radiation Exposure from Medical Imaging," U.S. Food and Drug Administration, 9 2 2010. [Online]. Available: http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm200085.htm?sms_ss=email. [Accessed 23 10 2013].
     
 
 
 
 
 

Related Content

HRS released a consensus statement on MRI for patients with cardiac implantable electronic devices
Feature | May 15, 2017
May 15, 2017 — The Heart Rhythm Society (HRS) released a first-of-its-kind consensus statement in the United States o
Study Reveals Low Adoption of IAEA Recommendations for Reduced Nuclear Cardiology Radiation Exposure
News | Radiation Dose Management| May 12, 2017
A study in 65 countries has revealed low adoption of International Atomic Energy Agency (IAEA) recommendations to...
Large Nuclear Cardiology Laboratory Slashes Radiation Dose 60 Percent in Eight Years
News | Radiation Dose Management| May 11, 2017
A large nuclear cardiology laboratory in Missouri has slashed its average radiation dose by 60 percent in eight years,...

Physicians will need to use a CMS-certified appropriate use criteria (AUC) clinical decision support software that documents the appropriateness of an imaging order to receive full reimbursement for Medicare patients starting Jan. 1, 2018.

Feature | Cardiac Imaging| April 18, 2017 | Dave Fornell
As part of U.S. healthcare reform efforts, starting Jan.
University of California Study Searches for Consistent CT Dose Best Practices
News | Radiation Dose Management| April 17, 2017
A new study led by UC San Francisco has found that radiation doses can be safely and effectively reduced – and more...
cardiac CT showing a severe right coronary artery lesion on a Toshiba Aquillion One

A cardiac CT showing a severe right coronary artery lesion on both 3-D and curved multiplanar reconstructions from a Toshiba Aquilion One CT system. The newest generation of CT scanners have very fast gantry speeds to freeze cardiac motion, improved image quality and much lower doses than previous generation scanners from a decade ago.

Feature | CT Angiography (CTA)| April 13, 2017 | Dave Fornell
Cardiac computed tomography (CT) imaging really took off a decade ago with the introduction of 64-slice scanners, whi
Toshiba Medical Launches Aquilion Lightning CT System
News | Computed Tomography (CT)| April 12, 2017
April 12, 2017 — Providers can now offer enhanced care and safe imaging to patients with a compact and economical sol
FDA Clears Siemens Somatom go. CT platform
Technology | Computed Tomography (CT)| April 11, 2017
The U.S. Food and Drug Administration (FDA) has cleared the Somatom go. computed tomography (CT) platform from Siemens...
SCCT, Toshiba Medical, partnership, residents-in-training
News | Computed Tomography (CT)| April 05, 2017
The Society of Cardiovascular Computed Tomography (SCCT) and Toshiba Medical announced a new partnership dedicated to...
Overlay Init