Feature | September 06, 2013

Researchers Aim to Use Light — Not Electric Jolts — to Restore Healthy Heartbeats

Johns Hopkins-led research team explores the field of optogenetics

September 6, 2013 — When a beating heart slips into an irregular, life-threatening rhythm, the treatment is well known: deliver a burst of electric current from a pacemaker or defibrillator. But because the electricity itself can cause pain, tissue damage and other serious side-effects, a Johns Hopkins-led research team wants to replace these jolts with a kinder, gentler remedy: light.

In a paper published Aug. 28, 2013, in the online journal Nature Communications, five biomedical engineers from Johns Hopkins and Stony Brook universities described their plan to use biological lab data and an intricate computer model to devise a better way to heal ailing hearts. Other scientists are already using light-sensitive cells to control certain activities in the brain. The Johns Hopkins-Stony Brook researchers say they plan to give this technique a cardiac twist so that doctors in the near future will be able to use low-energy light to solve serious heart problems such as arrhythmia.

“Applying electricity to the heart has its drawbacks,” said the project’s supervisor, Natalia Trayanova, the Murray B. Sachs professor of biomedical engineering at Johns Hopkins. “When we use a defibrillator, it’s like blasting open a door because we don’t have the key. It applies too much force and too little finesse. We want to control this treatment in a more intelligent way. We think it’s possible to use light to reshape the behavior of the heart without blasting it.”

To achieve this, Trayanova’s team is diving into the field of optogenetics, which is only about a decade old. Pioneered by scientists at Stanford, optogenetics refers to the insertion of light-responsive proteins called opsins into cells. When exposed to light, these proteins become tiny portals within the target cells, allowing a stream of ions — an electric charge — to pass through. Early researchers have begun using this tactic to control the bioelectric behavior of certain brain cells, forming a first step toward treating psychiatric disorders with light.

In the Nature Communications paper, the researchers reported that they had successfully tested this same technique on a heart -- one that “beats” inside a computer. Trayanova has spent many years developing highly detailed computer models of the heart that can simulate cardiac behavior from the molecular and cellular levels all the way up to that of the heart as a whole.

As detailed in the journal article, the Johns Hopkins computer model for treating the heart with light incorporates biological data from the Stony Brook lab of Emilia Entcheva, an associate professor of biomedical engineering. The Stony Brook collaborators are working on techniques to make heart tissue light-sensitive by inserting opsins into some cells. They also will test how these cells respond when illuminated.

In Trayanova’s own lab, her team members will use this model to conduct virtual experiments. They will try to determine how to position and control the light-sensitive cells to help the heart maintain a healthy rhythm and pumping activity. They will also try to gauge how much light is needed to activate the healing process. The overall goal is to use the computer model to push the research closer to the day when doctors can begin treating their heart patients with gentle light beams. The researchers say it could happen within a decade.

After the technology is honed through the computer modeling tests, it could be incorporated into light-based pacemakers and defibrillators.

For more information: www.nature.com/ncomms

Related Content

Trial Data Shows Positive Predictive Results for Boston Scientific HeartLogic Heart Failure Diagnostic
News | Heart Failure| October 20, 2017
October 20, 2017 — Boston Scientific announced new data from the Multisensor Chronic Evaluation in Ambulatory Heart F
Smartphone Apps Help Patients and Providers Manage Atrial Fibrillation
News | Patient Engagement| October 19, 2017
October 19, 2017 — Novel smartphone and tablet applications for atrial fibrillation patients and healthcare professio
The Respicardia Remede System is a pacemaker-like device designed to improve cardiovascular health by restoring natural breathing during sleep in patients with Central sleep apnea.
Technology | Heart Failure| October 18, 2017
October 18, 2017 — The U.S.
Baylis Medical and Siemens Co-Sponsor Transseptal Access Training Course
News | EP Lab| October 18, 2017
Baylis Medical Co. Inc. and Siemens Healthineers are co-sponsoring a first-of-its kind training program aimed at...
CardioFocus Announces European CE Mark Approval of HeartLight Excalibur Balloon
Technology | Ablation Systems| October 10, 2017
October 10, 2017 — CardioFocus Inc. recently announced the European CE Mark approval of the HeartLight Excalibur Ball
The Apama Radiofrequency (RF) Balloon Catheter System.
News | Ablation Systems| October 02, 2017
October 2, 2017 — Boston Scientific announced a definitive agreement to acquire Apama Medical Inc., a privately-held
Boston Scientific Launches Resonate Devices With HeartLogic Heart Failure Diagnostic
Technology | Implantable Cardioverter Defibrillator (ICD)| September 27, 2017
September 27, 2017 — Boston Scientific recently launched the Resonate family of...
Spectranetics Initiates Class I Recall for Bridge Occlusion Balloon Catheter
News | EP Lab| September 27, 2017
Spectranetics is recalling its Bridge Occlusion Balloon Catheter due to the possibility of a blocked guidewire lumen in...
Abbott Secures FDA Approval for MRI Compatibility on Ellipse ICD
Technology | Implantable Cardioverter Defibrillator (ICD)| September 22, 2017
Abbott announced U.S. Food and Drug Administration (FDA) approval for magnetic resonance (MR)-conditional labeling for...
Overlay Init