News | Optical Coherence Tomography (OCT) | October 01, 2020

World’s Smallest Intravascular OCT Imaging Device Created Using 3-D Printing

The researchers developed an ultra thin monolithic OCT endoscope that overcomes the limitations of current, larger OCT catheters by using 3-D printed components.

The researchers developed an ultra thin monolithic OCT endoscope that overcomes the limitations of current, larger OCT catheters by using 3-D printed components.

October 1, 2020 — A team of researchers led by the University of Adelaide and University of Stuttgart has used 3-D micro-printing to develop the world’s smallest, flexible optical coherence tomography (OCT) imaging catheter for looking inside blood vessels. A multidisciplinary team of researchers and clinicians was able to 3-D print a tiny lens on to the end of an optical fibre, the thickness of a human hair.

There work was published in the journal Light: Science & Applications.[1]

The camera-like imaging device can be inserted into blood vessels to provide high quality 3-D images to help scientists better understand the causes of heart attack and heart disease progression, and could lead to improved treatment and prevention. The imaging device is so small that researchers were able to scan inside the blood vessels of mice.

The researchers developed an ultrathin monolithic OCT endoscope that overcomes the limitations of current, larger OCT catheters by using two-photon polymerization to 3-D print 125 μm diameter micro-optics directly onto the optical fiber inside the the catheter. Freeform micro-optics have been created for correcting the nonchromatic aberrations of highly miniaturized probes, which cannot be fabricated using traditional techniques. The ultrathin OCT endoscope achieved a measured full width at half maximum (FWHM) focal spot size of 12.4 μm and effective depths of focus (the depth range in which FWHM < 2FWHMmin29) of 760 µm (x axis) and 1,100 µm (y axis). The utility of the ultrathin endoscope is demonstrated on both in situ preclinical (mouse) and ex vivo clinical (human) models of cardiovascular disease. We are now able to reveal details of the tissue microarchitecture at depths not previously achieved with such small imaging probes. To the best of our knowledge, this is the smallest aberration-corrected intravascular probe to have been developed, the researchers explained.

Dr. Jiawen Li, co-author and Heart Foundation Post-doctoral Fellow at the Institute for Photonics and Advanced Sensing, University of Adelaide, said in Australia cardiovascular disease kills one person every 19 minutes.

“A major factor in heart disease is the plaques, made up of fats, cholesterol and other substances that build up in the vessel walls,” Li said. “Preclinical and clinical diagnostics increasingly rely on visualizing the structure of the blood vessels to better understand the disease. Miniaturized endoscopes, which act like tiny cameras, allow doctors to see how these plaques form and explore new ways to treat them,” she said.

Dr. Simon Thiele, group leader, optical design and simulation at the University of Stuttgart, was responsible for fabricating the tiny lens.

“Until now, we couldn’t make high quality endoscopes this small,” Thiele said. “Using 3D micro-printing, we are able to print complicated lenses that are too small to see with the naked eye. The entire endoscope, with a protective plastic casing, is less than half a millimeter across."

“It’s exciting to work on a project where we take these innovations and build them into something so useful," Li explains. “It’s amazing what we can do when we put engineers and medical clinicians together."

The research collaboration also included researchers from The South Australian Health and Medical Research Institute, The Royal Adelaide Hospital and Monash University.

Use of 3D printing enabled the production of an OCT catheter the width of a human hair.

A: Three-dimensional rendering of the volumetric data set acquired with a 3-D printed intravascular imaging catheter in a diseased mouse artery. The volume comprises 258 frames of OCT images. 2. This rendering reveals distributions of cholesterol crystals, which are indicated by white. B: Cross-sectional OCT image of region 1 in A. C: corresponding histology image. F: Cross-sectional OCT image of region 2 in A. G: corresponding histology image; Scale bar equals 100 µm. Find more images and information.

 

 

Related 3-D printing Content:

The Future of 3-D Printing in Medicine

World’s Smallest Intravascular OCT Imaging Device Created Using 3-D Printing

Researchers 3-D Print a Beating Heart From Human Cells

New Technique Allows More Complicated 3-D Bioprinting

The Use of 3-D Printing in Cardiology

 

 

Reference:

1. Jiawen Li, Simon Thiele, Bryden C. Quirk, et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light: Science & Applications volume 9, Article number: 124 (2020). Published online 20 July 2020. https://doi.org/10.1038/s41377-020-00365-w.

Related Content

There is a trend in interventional cardiology that is now being called “renalism,” where patients with poor renal function are being excluded from interventional procedures because they are automatically considered too high risk. However, some hospitals are also creating cardio-renal care teams so these patients can be cared for by a team of experts rather than interventional cardiologists going it alone. #SCAI21 #SCAI2021 Creating a card0-renal program.

There is a trend in interventional cardiology that is now being called “renalism,” where patients with poor renal function are being excluded from interventional procedures because they are automatically considered too high risk. However, some hospitals are also creating cardio-renal care teams so these patients can be cared for by a team of experts rather than interventional cardiologists going it alone.

Feature | Cath Lab | May 14, 2021 | By Dave Fornell, Editor
There is a trend in interventional cardiology that is now being called “renalism,” where patients with poor renal fun
Abbott recently announced its new interventional imaging platform powered by Ultreon 1.0 Software, has gained European CE marked. This first-of-its-kind imaging software merges optical coherence tomography (OCT) intravascular imaging with the power of artificial intelligence (AI) for enhanced visualization. The new Ultreon Software can automatically detect the severity of calcium-based blockages and measure vessel diameter to enhance the precision of physicians’ decision-making during coronary stenting proc

Abbott recently announced its new interventional imaging platform powered by Ultreon 1.0 Software, has gained European CE marked. This first-of-its-kind imaging software merges optical coherence tomography (OCT) intravascular imaging with the power of artificial intelligence (AI) for enhanced visualization. The new Ultreon Software can automatically detect the severity of calcium-based blockages and measure vessel diameter to enhance the precision of physicians’ decision-making during coronary stenting procedures.

News | Cath Lab | May 12, 2021
May 12, 2021 — Abbott recently announced its new interventional imaging platform powered by Ultreon 1.0 Software, has
SCAI 2021 late-breaking presentations included the data on the Medtronic Harmony transcatheter pulmonary valve, cutting radial access hemostasis time by 50 percent, improving cardiogenic shock survival to 71 percent, and data showing very high mortality in COVID patients who suffer a STEMI heart attack. #SCAI21 #SCAI2021

SCAI 2021 late-breaking presentations included the data on the Medtronic Harmony transcatheter pulmonary valve, cutting radial access hemostasis time by 50 percent, improving cardiogenic shock survival to 71 percent, and data showing very high mortality in COVID patients who suffer a STEMI.

Feature | Cath Lab | May 06, 2021 | By Dave Fornell, Editor
April 29, 2021 — Here is the list of late-breaking study presentations and links to articles about each of them from
Most Stable Ischemic Heart Disease Patients Did Not Meet ISCHEMIA Trial Enrollment Criteria, raising questions about its application in real-world practice. #SCAI2021 Getty Images

Getty Images

News | Cath Lab | May 03, 2021
May 3, 2021 – Results from a new study find a broad range of patients who typically undergo revascularization for sta
New study demonstrates depression, HIV, mental health, obesity, alcohol and drug abuse are risk factors on most common type of heart disease in young black patients. Photo by Dave Fornell
News | Cath Lab | April 29, 2021
April 29, 2021 – A retrospective analysis of risk factors for coronary artery disease (CAD) in young African American
There are far fewer patients coming to hospitals with heart attacks during the COVID-19 pandemic as compared to averages prior to the pandemic. This has raised concerns that delayed treatment will cause an uptick in cardiac deaths and heart failure. Photo from Getty Images 

There are far fewer patients coming to hospitals with heart attacks during the COVID-19 pandemic as compared to averages prior to the pandemic. This has raised concerns that delayed treatment will cause an uptick in cardiac deaths and heart failure. Photo from Getty Images 

News | Cath Lab | April 28, 2021
April 28, 2021 – Results from a retrospective observational study, presented today at...
A cardiac cath lab at Henry Ford Hospital in Detroit. Photo by Dave Fornell

A cardiac cath lab complex PCI case at Henry Ford Hospital in Detroit. Photo by Dave Fornell

News | Cath Lab | April 28, 2021
Videos | Cath Lab | April 02, 2021
Corindus, a Siemens Healthineers company and a developer of vascular robotics, recently launched a new set of automat
Videos | Cath Lab | March 31, 2021
This is a quick example of clinical use of the Shockwave Medical Intravascular Lithotripsy system that uses sonic wav