Feature | June 08, 2012

Childhood CT Scans Linked to Leukemia, Brain Cancer Later in Life

June 8, 2012 — Children and young adults scanned multiple times by computed tomography (CT) have a small increased risk of leukemia and brain tumors in the decade following their first scan. These findings are from a study of more than 175,000 children and young adults that was led by researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, and at the Institute of Health and Society, Newcastle University, England.

The researchers emphasize that when a child suffers a major head injury or develops a life-threatening illness, the benefits of clinically appropriate CT scans should outweigh future cancer risks. The results of the study were published online June 7 in The Lancet.

"This cohort study provides the first direct evidence of a link between exposure to radiation from CT and cancer risk in children," said senior investigator Amy Berrington de González, Ph.D., division of cancer epidemiology and genetics, NCI. "Ours is the first population-based study to capture data on every CT scan to an individual during childhood or young adulthood, and then measure the subsequent cancer risk."

Despite the elevation in cancer risk, these two malignancies are relatively rare and the actual number of additional cases caused by radiation exposure from CT scans is small. The most recent (2009) U.S. annual cancer incidence rates for children from birth through age 21 for leukemia and brain and other nervous system cancers are 4.3 per 100,000 and 2.9 per 100,000, respectively. The investigators estimate that for every 10,000 head CT scans performed on children 10 years of age or younger, one case of leukemia and one brain tumor would occur in the decade following the first CT beyond what would have been expected had no CT scans been performed.

CT scans deliver a dose of ionizing radiation to the body part being scanned and to nearby tissues. Even at relatively low doses, ionizing radiation can break the chemical bonds in DNA, causing damage to genes that may increase a person’s risk of developing cancer. Children typically face a higher risk of cancer from ionizing radiation exposure than do adults exposed to similar doses.

The investigators obtained CT examination records from radiology departments in hospitals across Britain and linked them to data on cancer diagnoses and deaths. The study included people who underwent CT scans at British National Health Service hospitals from birth to 22 years of age between 1985 and 2002. Information on cancer incidence and mortality from 1985 through 2008 was obtained from the National Health Service Central Registry, a national database of cancer registrations, deaths and emigrations.

Approximately 60 percent of the CT scans were of the head, with similar proportions in males and females. The investigators estimated cumulative doses from the CT scans received by each patient, and assessed the subsequent cancer risk for an average of 10 years after the first CT. The researchers found a clear relationship between the increase in cancer risk and increasing cumulative dose of radiation. A three-fold increase in the risk of brain tumors appeared following a cumulative absorbed dose to the head of 50 to 60 mGy (unit of estimated absorbed dose of ionizing radiation). Similarly, a three-fold increase in the risk of leukemia appeared after the same dose to bone marrow. The comparison group consisted of individuals who had cumulative doses of less than 5 mGy to the relevant regions of the body.

The absorbed dose from a CT scan depends on factors including age at exposure, sex, examination type, and year of scan. Broadly speaking, two or three CT scans of the head using current scanner settings would be required to yield a dose of 50 to 60 mGy to the brain. The same dose to bone marrow would be produced by five to 10 head CT scans, using current scanner settings for children under age 15.

In countries like the United States and Britain, the use of CT scans in children and adults has increased rapidly since their introduction 30 years ago. Due to efforts by medical societies, government regulators, and CT manufacturers, scans performed on young children in 2012 can have 50 percent lower radiation doses, compared to scans carried out in the 1980s and 1990s, say the investigators. However, the amount of radiation delivered during a single CT scan can still vary greatly and is often up to 10 times higher than that delivered in a conventional X-ray procedure.

“CT can be highly beneficial for early diagnosis, for clinical decision-making and for saving lives. However, greater efforts should be made to ensure clinical justification and to keep doses as low as reasonably achievable,” said Mark S. Pearce, Ph.D., Institute of Health and Society, Newcastle University, lead author of the study.

For more information: www.cancer.gov/cancertopics/causes/radiation/radiation-risks-pediatric-CT

Related Content

St. Jude Medical, HeartMate 3 LVAS, MOMENTUM 3 IDE study results, AHA Scientific Sessions 2016
News | Ventricular Assist Devices (VAD)| December 08, 2016
St. Jude Medical Inc. announced results of the MOMENTUM 3 U.S. IDE Clinical Study during a late-breaking clinical trial...
PET, F-18 florbetaben, cardiac amyloidosis, Princess Alexandria Hospital

In a pilot study, F-18-florbetaben PET imaging appeared promising for differentiating between cardiac amyloidosis and hypertensive heart disease. Image courtesy of W. Phillip Law/Princess Alexandra Hospital, Brisbane, Australia.

News | Nuclear Imaging| December 06, 2016
Researchers at Princess Alexandra Hospital, Brisbane, Australia, have demonstrated that cardiac amyloidosis (abnormal...
coronary CT angiography, CCTA, alcohol consumption, CAD, coronary artery disease, RSNA 2016
News | CT Angiography (CTA)| November 29, 2016
Researchers using coronary computed tomography angiography (CCTA) found no association between light to moderate...
News | Cath Lab| November 21, 2016
November 21, 2016 – A single-center study sponsored by the National Institutes of Health (NHLBI) failed to show an ea
Philips, DoseWise Portal 2.2, RSNA 2016, radiation dose management
Technology | Radiation Dose Management| November 21, 2016
November 21, 2016 — Philips introduced DoseWise Portal 2.2, a next-generation...
InspireMD, CGuard embolic protection system, EPS, clinical data, internal carotid artery stenosis, ICA
News | Stents Carotid| November 18, 2016
November 18, 2016 — InspireMD Inc.
Boston Scientific, HeartLogic Heart Failure Diagnostic Service, MultiSENSE trial data, AHA Scientific Sessions 2016
News | Heart Failure| November 18, 2016
Boston Scientific recently announced results from the first clinical trial evaluating the performance of the HeartLogic...
Sponsored Content | Videos | CT Angiography (CTA)| November 18, 2016
A discussion with Simon Dixon, M.D., MBChB, on the use of fractional flow reserve-computed tomography (FFR-CT) to eva
cardiac rehabilitation, depression, death risk, heart surgery, Intermountain Medical Center Heart Institute, AHA Scientific Sessions 2016
News | Cardiac Rehabilitation| November 15, 2016
Depression has been known to be associated with poor cardiovascular outcomes. But if patients who are depressed attend...
atrial fibrillation, warfarin, dementia, Intermountain Medical Center Heart Institute, American Heart Association, AHA Scientific Sessions 2016
News | Atrial Fibrillation| November 15, 2016
Atrial fibrillation patients who use warfarin to lower risk of stroke are at higher risk of developing dementia than...
Overlay Init