Feature | May 19, 2009

Comparing Cardiac Ultrasound Scanners

This comparison chart covers dedicated cardiac ultrasound scanners specifically intended for performing cardiac or vascular imaging studies. General purpose systems with extensive cardiac scanning options are also included.

Cardiac ultrasound scanners are ultrasound scanning and image processing systems designed specifically for real-time, noninvasive imaging of heart structures. They are used to detect such conditions as mitral and aortic stenosis and insufficiency to determine the extent of damage from suspected myocardial infarction and to diagnose congenital cardiac defects — such as patent ductus arteriosus and transposition of the great arteries. Cardiac ultrasound can also be used instead of cardiac catheterization to monitor ventricular function. Transesophageal echocardiography (TEE) is most commonly used in surgery for detecting myocardial ischemia and monitoring cardiac output. This intraoperative use of TEE allows analysis of regional cardiac wall motion, in which abnormalities have been shown to develop within 15 seconds of coronary occlusion.

Vascular ultrasonic scanning gives the physician profiles of arteries and veins throughout the body. It is used to diagnose atherosclerotic obstructions, occlusions, disease and incompetence by means of a 2D, real-time image of the organ or vessel, as well as a profile of blood-flow velocity through the area being examined. In many cases, vascular ultrasonic scanning systems prevent the need for contrast arteriography, which requires vessel cannulation, contrast media injection and ionizing radiation exposure. Vascular ultrasound imaging is the primary screening method for deep vein thrombosis (DVT). Many ultrasonic scanning systems that are marketed primarily for cardiac and vascular applications can be used for other applications; however, additional transducers or software may be needed.

Various probes of different ultrasonic frequencies are available. For diagnostic imaging, frequencies from 2 to 30 MHz are typically used, while frequencies of 5 to 15 MHz are considered optimal for vascular scanning. Probes that generate higher frequencies produce shorter wavelengths and narrower beams, which improve resolution; however, higher-frequency sound energy is more readily absorbed by tissue and the usable depth of penetration is decreased. Many systems now have broadband probes, which have larger frequency ranges than traditional probes and offer combinations of deeper penetration and higher resolution.

Various modes are available for displaying the returning echoes. B-mode (brightness-modulated mode) is the scanning system’s basic imaging mode. B-mode produces a real-time, 2D image that represents a cross-sectional slice of the area under study. M-mode (motion-mode) uses a fixed position pulsed beam to produce a moving display of a single scan line over an interval of time. Used almost exclusively in cardiac studies, M-mode produces a graphic display of a moving structure (e.g., the cardiac valve over several heart beats.) Simultaneous display of M- and B-modes is particularly useful when examining dynamic structures such as the heart.

Cardiac ultrasound scanners use Doppler to determine the direction and speed of blood flow. Most scanners include spectral Doppler, either continuous wave (CW) or pulsed wave (PW). Spectral Doppler includes a spectrum analyzer to display frequency shifts plotted against time with grayscale intensity varying with the received signals’ strength or amplitude. Color Doppler imaging of myocardial tissue to show motion and assess myocardial viability is being researched for applications in stress echocardiography evaluations of heart abnormalities (e.g., Wolff-Parkinson-White-Syndrome) and reperfusion therapy.

Some manufacturers offer 3D ultrasound, which involves volume-per-second acquisition and display for volume measurements, improved imaging presentation and volume-of-interest studies. The 3D images can be produced by direct online 3D acquisition with a transducer scanning a volume instead of a slice of the tissue. An advantage of 3D ultrasound is that it can simulate intraoperative visualization.

Expanding vascular applications include guided sclerotherapy; assessment of pelvic venous congestion, sapheous insufficiency, saphenofemoral reflux and perforator disease and imaging of the lower-extremity DVT.

Related Content

Alpha Source, data study, ultrasound equipment, total cost of ownership
News | Cardiovascular Ultrasound| February 01, 2016
Alpha Source, a Milwaukee-based provider of healthcare technology management solutions, announced the publication of a...
AMA, investigational CPT code, myocardial strain imaging, cardio-oncology
News | Cardiovascular Ultrasound| January 27, 2016
Effective Jan. 1, 2016, the American Medical Association (AMA) Current Procedural Terminology (CPT) Editorial Panel...
Technology | Ultrasound Intra-cardiac Echo (ICE)| January 26, 2016
Conavi Medical Inc. (formerly Colibri Technologies Inc.) has received U.S. Food and Drug Administration (FDA) 510(k)...
Fujifilm, SonoSite Edge II, portable ultrasound system, FDA and CE clearance
Technology | Ultrasound Imaging| January 26, 2016
January 26, 2016 — Fujifilm SonoSite Inc. announced CE mark and U.S.
Sponsored Content | Case Study | Cardiovascular Ultrasound| January 21, 2016
This case study is from the Cardiac Imaging Department, Hospital Clinic, Barcelona, Spain.
Csound, GE ultrasound

4D Clarity, HDlive and cSound acquisition provide excellent TTE and TEE images.

Sponsored Content | Case Study | January 21, 2016
GE Healthcare is taking the next leap in image quality performance, quantification and workflow with the introduction
Cath lab radiation dose reduaction, doseaware, raysafe

The Philips DoseAware Xtend system is an advanced version of the Unfors RaySafe system, combining real time radiation detection badges and a live video screen showing each person in the cath lab in a different color. The system reports their real-time exposure rate and cumulative dose since the start of a procedure. It shows changes in dose exposure the closer a person gets to the C-arm.

Feature | Cardiac Imaging| January 12, 2016 | Dave Fornell
Each year radiology vendors use the Radiological Society of North America (RSNA) meeting as a springboard to unveil t
Fujifilm VisualSonics, Vevo MD, UHF, ultra-high frequency ultrasound, CE Mark
Technology | Cardiovascular Ultrasound| January 11, 2016
Fujifilm VisualSonics Inc. announced CE mark for the Vevo MD, what the company calls the world’s first ultra-high...
ASE, guidelines, echocardiography, cardiac sources of stroke, embolism
News | Cardiovascular Ultrasound| January 07, 2016
Stroke is the third leading cause of death in the Western industrialized world, and according to the Centers for...
Technology | Cardiovascular Ultrasound| December 30, 2015
Hitachi Aloka Medical America is proud to partner with AccreditCoach to provide customers assistance with accreditation...
Overlay Init