Feature | May 19, 2009

Comparing Cardiac Ultrasound Scanners

This comparison chart covers dedicated cardiac ultrasound scanners specifically intended for performing cardiac or vascular imaging studies. General purpose systems with extensive cardiac scanning options are also included.

Cardiac ultrasound scanners are ultrasound scanning and image processing systems designed specifically for real-time, noninvasive imaging of heart structures. They are used to detect such conditions as mitral and aortic stenosis and insufficiency to determine the extent of damage from suspected myocardial infarction and to diagnose congenital cardiac defects — such as patent ductus arteriosus and transposition of the great arteries. Cardiac ultrasound can also be used instead of cardiac catheterization to monitor ventricular function. Transesophageal echocardiography (TEE) is most commonly used in surgery for detecting myocardial ischemia and monitoring cardiac output. This intraoperative use of TEE allows analysis of regional cardiac wall motion, in which abnormalities have been shown to develop within 15 seconds of coronary occlusion.

Vascular ultrasonic scanning gives the physician profiles of arteries and veins throughout the body. It is used to diagnose atherosclerotic obstructions, occlusions, disease and incompetence by means of a 2D, real-time image of the organ or vessel, as well as a profile of blood-flow velocity through the area being examined. In many cases, vascular ultrasonic scanning systems prevent the need for contrast arteriography, which requires vessel cannulation, contrast media injection and ionizing radiation exposure. Vascular ultrasound imaging is the primary screening method for deep vein thrombosis (DVT). Many ultrasonic scanning systems that are marketed primarily for cardiac and vascular applications can be used for other applications; however, additional transducers or software may be needed.

Various probes of different ultrasonic frequencies are available. For diagnostic imaging, frequencies from 2 to 30 MHz are typically used, while frequencies of 5 to 15 MHz are considered optimal for vascular scanning. Probes that generate higher frequencies produce shorter wavelengths and narrower beams, which improve resolution; however, higher-frequency sound energy is more readily absorbed by tissue and the usable depth of penetration is decreased. Many systems now have broadband probes, which have larger frequency ranges than traditional probes and offer combinations of deeper penetration and higher resolution.

Various modes are available for displaying the returning echoes. B-mode (brightness-modulated mode) is the scanning system’s basic imaging mode. B-mode produces a real-time, 2D image that represents a cross-sectional slice of the area under study. M-mode (motion-mode) uses a fixed position pulsed beam to produce a moving display of a single scan line over an interval of time. Used almost exclusively in cardiac studies, M-mode produces a graphic display of a moving structure (e.g., the cardiac valve over several heart beats.) Simultaneous display of M- and B-modes is particularly useful when examining dynamic structures such as the heart.

Cardiac ultrasound scanners use Doppler to determine the direction and speed of blood flow. Most scanners include spectral Doppler, either continuous wave (CW) or pulsed wave (PW). Spectral Doppler includes a spectrum analyzer to display frequency shifts plotted against time with grayscale intensity varying with the received signals’ strength or amplitude. Color Doppler imaging of myocardial tissue to show motion and assess myocardial viability is being researched for applications in stress echocardiography evaluations of heart abnormalities (e.g., Wolff-Parkinson-White-Syndrome) and reperfusion therapy.

Some manufacturers offer 3D ultrasound, which involves volume-per-second acquisition and display for volume measurements, improved imaging presentation and volume-of-interest studies. The 3D images can be produced by direct online 3D acquisition with a transducer scanning a volume instead of a slice of the tissue. An advantage of 3D ultrasound is that it can simulate intraoperative visualization.

Expanding vascular applications include guided sclerotherapy; assessment of pelvic venous congestion, sapheous insufficiency, saphenofemoral reflux and perforator disease and imaging of the lower-extremity DVT.

Related Content

Epsilon Imaging, EchoInsight, left ventricle, LV measurement, strain imaging, ASE 2016
News | Cardiovascular Ultrasound| June 17, 2016
Epsilon Imaging Inc. announced a research study was presented at the American Society of Echocardiography (ASE) 2016...
hypertrophic cardiomyopathy, HCM, strain echocardiography, risk assessment, ASE 2016
News | Cardiovascular Ultrasound| June 13, 2016
After following a large sub-set of patients, researchers found that by using strain echocardiography they could...
ASE 2016, Mayo Clinic study, echocardiography, aortic flow rate, patient risk stratification
News | Cardiovascular Ultrasound| June 13, 2016
Researchers from Mayo Clinic believe they have found a better way to risk stratify some of their most fragile patients.
ASE 2016, echocardiography, telemedicine, Arkansas, pediatric patients
News | Telecardiology| June 13, 2016
Two new research studies verify that echocardiography, linked to experts through telemedicine, can provide better and...
cardiac ultrasound, ASE, American society of echo
News | Cardiovascular Ultrasound| June 09, 2016
Below is a roundup of recent echo news that highlights technologies and topics that will be featured at the American
TeleHealthRobotics, Tele-Robotic Ultrasound, TRUDI, robotic ultrasound

The Tele-Robotic Ultrasound for Distance Imaging (TRUDI) system uses a robotic arm so a remote sonographer can control the echo probe without the need for them to be in the same room or even be in the hospital during an exam or procedure. 

News | Cardiovascular Ultrasound| June 09, 2016
June 9, 2016 — The American Society of Echocardiography (ASE) will host Echovation Challenge 2016, a competition for
ASE 2016, echocardiography, Seattle
News | Cardiovascular Ultrasound| June 01, 2016
The American Society of Echocardiography (ASE) will host its 27th Annual Scientific Sessions, June 10-14, 2016, at the...
Technology | Cardiac Imaging| May 18, 2016
May 18, 2016 — The Intersocietal Accreditation Commission (IAC) recently announced its launch of the IAC QI Self-Asse
GE Ultrasound, GE echo, strain, cardio-oncology

GE Healthcare's cardiac ultrasound strain assessment software helps quantify left ventricular wall motion to determine if there is damage to cardiac function due to cancer therapy.

Feature | Cardio-oncology| May 11, 2016 | Dave Fornell
Cardio-oncology is an emerging field that combines the expertise of both cardiology and oncology to assess and treat...
American Society of Echocardiography, ASE guideline, left ventricular diastolic function, LV, heart failure, JASE
News | Cardiovascular Ultrasound| May 03, 2016
May 3, 2016 — Good news for clinicians and their patients: the evaluation of left ventricular (LV) diastolic function
Overlay Init