Feature | September 06, 2013| Steven L. Higgins, M.D., FHRS

Integrating Fluoroscopy Into 3-D Mapping Reduces Radiation During Catheter Ablation

New technology to help reduce X-ray dose during long EP procedures

Carto 3, Biosense Webster, CartoUnivu

Figure 1. The Carto 3 System generates real-time 3-D maps and allows visualization of catheters in the cardiac anatomy during catheter ablation procedures.

Figure 2. The CartoUnivu module integrates a static fluoroscopic image with a 3-D map generated from the Carto 3 System, enabling a seamless view of the cardiac structures.

Nationwide data show that although only about 12 percent of X-ray exams are for interventional cardiology or electrophysiology (EP) procedures, nearly 50 percent of a patient’s lifetime radiation exposure comes from the cardiovascular labs. In an effort to reduce this level of patient radiation exposure, Scripps Prebys Cardiovascular Institute, part of Scripps Memorial Hospital and Scripps Green Hospital, evaluated Biosense Webster’s CartoUnivu module for the Carto 3 System (Figure 1) before it was made commercially available earlier this year. Researchers looked for its potential benefits in reducing radiation exposure to patients and clinical staff. 
 
Methods
The CartoUnivu module provides for fixed fluoroscopic images or cines to be transferred to the 3-D electro-anatomic mapping system. The module allows for real-time visualization of intracardiac catheters against a background of a stored fluoroscopic image (Figure 2). Typically, multiple fluoroscopic images (three to eight) are acquired at different angulations and stored. Once transferred, the fluoro image is integrated into the 3-D map view, allowing the user to create an electo-anatomical map on top of the captured fluoroscopic image or looping cine. Not only does this proved fluoroscopic images for reference, our electrophysiologists consistently commented that it diminished the interest in confirming catheter location with additional fluoroscopy.
 
Researchers performed a retrospective evaluation of the impact of this new technology on radiation usage. We reviewed our first 31 CartoUnivu cases from two EP laboratories and compared the procedure and fluoroscopy times to 96 procedures for six months using traditional mapping and fluoroscopy methods, matched by operator (total of eight). The 137 patients included in the study were referred for either pulmonary vein isolation (PVI) procedures for atrial fibrillation (18 study, 51 controls), cavotricuspid isthmus block for atrial flutter (8 study, 33 controls), supraventricular tachycardia ablation, either atrioventricular nodal reentrant tachycardia (AVNRT) or Wolff–Parkinson–White syndrome (WPW) (six study, 23 controls) or ventricular tachycardia (VT) (three study, six controls). The study was approved by the Scripps Institutional Review Board; all data was de-identified for confidentiality.
 
Results
Cumulative for all procedures, researchers found that the average procedure duration for the CartoUnivu module assisted studies was 254±31 minutes versus 267±85 for the retrospective control group (p=NS). However, the average fluoroscopy times for the CartoUnivu studies were 22±19 minutes versus 60±27 minutes for the comparison group (p<.0001). The fluoroscopy dosage was 1,453 cGy/cm² for the CartoUnivu module versus 3,593 cGy/cm² in controls (p<.0001). The average reduction in fluoroscopy time was 64 percent and dosage 60 percent with the CartoUnivu approach.
 
The retrospective comparison has limitations as the new focus on reduced radiation usage impacted physician behavior with the new CartoUnivu module. Nevertheless, once mastered, the learning curve inherent with the new system would suggest an opportunity to further diminish radiation usage. Researchers evaluated the findings by operator and procedure. Every operator (n=8) has lower radiation usage with the CartoUnivu module. The radiation reduction was observed in all ablation procedures, though it was more pronounced in the complex cases (PVI and VT).
 
Conclusion
In a non-randomized retrospective review, researchers found a statistically significant 64 percent reduction in fluoroscopy times and 60 percent in dosages (p<.0001) for EP ablation procedures utilizing the CartoUnivu module fluoroscopic integration system as compared to traditional fluoroscopy supplemented with similar 3-D mapping. The availability of a fluoroscopic image to be stored and superimposed into the 3-D electro-anatomic mapping system resulted in less need for fluoroscopic confirmation of landmarks and catheter positions. They predict that this CartoUnivu module will reduce physician dependence on fluoroscopic imaging and thus diminish radiation exposure for patients, physicians and staff. If these data are confirmed, patient safety will be positively impacted by this new technology.
 
Editor’s note: Steven L. Higgins, M.D., FHRS, chairman, department of cardiology, director of electrophysiology, Scripps Memorial Hospital, La Jolla, Calif. He is a paid consultant to Biosense Webster. The Scripps Prebys Cardiovascular Institute combines the expertise of Scripps Memorial Hospital and Scripps Green Hospital, with a skilled team of nearly 100 cardiologists. Scripps was recently designated as No. 20 in the U.S. News Top-Ranked Hospitals for cardiology and heart surgery.

Related Content

anticoagulants, U.S. market, Technavio, 2020, trends
News | Antiplatelet and Anticoagulation Therapies| May 25, 2016
Technavio’s latest report on the U.S. anticoagulants market provides an analysis on the most important trends expected...
Boston Scientific, FDA, IntelliNav XP ablation catheters, Rhythmia Mapping System

Rhythmia Mapping System image courtesy of Boston Scientific

Technology | Ablation Systems| May 23, 2016
Boston Scientific has received U.S. Food and Drug Administration (FDA) approval for two catheters that can be used with...
Watchman, left atrial appendage closure, LAA occluder, LAA. LAAO, laa occluder, left atrial appendage, Watchman

The Boston Scientific Watchman device is currently the only transcatheter LAA occluder cleared for use in the United States.

Feature | Left Atrial Appendage (LAA) Occluders| May 20, 2016 | Dave Fornell
Atrial fibrillation (AF) affects nearly 6 million Americans and the condition puts them at significantly greater risk
News | Atrial Fibrillation| May 19, 2016
Physician-researchers in the College of Medicine at the University of Cincinnati have developed a computerized decision...
St. Jude Medical, EuroPCR 2016 studies, FFR, LAAO, left atrial appendage occlusion, fractional flow reserve, Amplatzer
News | Cath Lab| May 19, 2016
St. Jude Medical Inc. announced results from two cardiovascular clinical trials presented at EuroPCR 2016.
Johns Hopkins, virtual heart modeling tool, VARP, arrhythmias, implanted defibrillator

Examples of how the computer model would classify one patient at high risk for heart arrhythmia and another at low risk. Image courtesy of Royc Faddis/Johns Hopkins University.

News | Cardiac Diagnostics| May 17, 2016
May 17, 2016 — An interdisciplinary Johns Hopkins University team has developed a...
AATS 2016, tricuspid regurgitation, post mitral valve repair, Tirone E. David, atrial fibrillation
News | Structural Heart| May 16, 2016
At the 96th American Association for Thoracic Surgery (AATS) Annual Meeting, investigators presented the results of a...
News | Ablation Systems| May 11, 2016
Patients with Wolff-Parkinson-White syndrome who receive catheter ablation to cure their abnormal heart rhythms are...
Medtronic, FDA approval, MR-conditional CRT-Ds, defibrillators, Amplia, Compia
Technology | Cardiac Resynchronization Therapy Devices (CRT)| May 11, 2016
Medtronic plc recently announced it received U.S. Food and Drug Administration (FDA) approval for the first and only...
Imricor, Vision-MR ablation catheter, clinical study, MRI guidance
News | Ablation Systems| May 10, 2016
Imricor Medical Systems announced enrollment of the first patients in a clinical study to evaluate the Vision-MR...
Overlay Init