Feature | September 06, 2013| Steven L. Higgins, M.D., FHRS

Integrating Fluoroscopy Into 3-D Mapping Reduces Radiation During Catheter Ablation

New technology to help reduce X-ray dose during long EP procedures

Carto 3, Biosense Webster, CartoUnivu

Figure 1. The Carto 3 System generates real-time 3-D maps and allows visualization of catheters in the cardiac anatomy during catheter ablation procedures.

Figure 2. The CartoUnivu module integrates a static fluoroscopic image with a 3-D map generated from the Carto 3 System, enabling a seamless view of the cardiac structures.

Nationwide data show that although only about 12 percent of X-ray exams are for interventional cardiology or electrophysiology (EP) procedures, nearly 50 percent of a patient’s lifetime radiation exposure comes from the cardiovascular labs. In an effort to reduce this level of patient radiation exposure, Scripps Prebys Cardiovascular Institute, part of Scripps Memorial Hospital and Scripps Green Hospital, evaluated Biosense Webster’s CartoUnivu module for the Carto 3 System (Figure 1) before it was made commercially available earlier this year. Researchers looked for its potential benefits in reducing radiation exposure to patients and clinical staff. 
 
Methods
The CartoUnivu module provides for fixed fluoroscopic images or cines to be transferred to the 3-D electro-anatomic mapping system. The module allows for real-time visualization of intracardiac catheters against a background of a stored fluoroscopic image (Figure 2). Typically, multiple fluoroscopic images (three to eight) are acquired at different angulations and stored. Once transferred, the fluoro image is integrated into the 3-D map view, allowing the user to create an electo-anatomical map on top of the captured fluoroscopic image or looping cine. Not only does this proved fluoroscopic images for reference, our electrophysiologists consistently commented that it diminished the interest in confirming catheter location with additional fluoroscopy.
 
Researchers performed a retrospective evaluation of the impact of this new technology on radiation usage. We reviewed our first 31 CartoUnivu cases from two EP laboratories and compared the procedure and fluoroscopy times to 96 procedures for six months using traditional mapping and fluoroscopy methods, matched by operator (total of eight). The 137 patients included in the study were referred for either pulmonary vein isolation (PVI) procedures for atrial fibrillation (18 study, 51 controls), cavotricuspid isthmus block for atrial flutter (8 study, 33 controls), supraventricular tachycardia ablation, either atrioventricular nodal reentrant tachycardia (AVNRT) or Wolff–Parkinson–White syndrome (WPW) (six study, 23 controls) or ventricular tachycardia (VT) (three study, six controls). The study was approved by the Scripps Institutional Review Board; all data was de-identified for confidentiality.
 
Results
Cumulative for all procedures, researchers found that the average procedure duration for the CartoUnivu module assisted studies was 254±31 minutes versus 267±85 for the retrospective control group (p=NS). However, the average fluoroscopy times for the CartoUnivu studies were 22±19 minutes versus 60±27 minutes for the comparison group (p<.0001). The fluoroscopy dosage was 1,453 cGy/cm² for the CartoUnivu module versus 3,593 cGy/cm² in controls (p<.0001). The average reduction in fluoroscopy time was 64 percent and dosage 60 percent with the CartoUnivu approach.
 
The retrospective comparison has limitations as the new focus on reduced radiation usage impacted physician behavior with the new CartoUnivu module. Nevertheless, once mastered, the learning curve inherent with the new system would suggest an opportunity to further diminish radiation usage. Researchers evaluated the findings by operator and procedure. Every operator (n=8) has lower radiation usage with the CartoUnivu module. The radiation reduction was observed in all ablation procedures, though it was more pronounced in the complex cases (PVI and VT).
 
Conclusion
In a non-randomized retrospective review, researchers found a statistically significant 64 percent reduction in fluoroscopy times and 60 percent in dosages (p<.0001) for EP ablation procedures utilizing the CartoUnivu module fluoroscopic integration system as compared to traditional fluoroscopy supplemented with similar 3-D mapping. The availability of a fluoroscopic image to be stored and superimposed into the 3-D electro-anatomic mapping system resulted in less need for fluoroscopic confirmation of landmarks and catheter positions. They predict that this CartoUnivu module will reduce physician dependence on fluoroscopic imaging and thus diminish radiation exposure for patients, physicians and staff. If these data are confirmed, patient safety will be positively impacted by this new technology.
 
Editor’s note: Steven L. Higgins, M.D., FHRS, chairman, department of cardiology, director of electrophysiology, Scripps Memorial Hospital, La Jolla, Calif. He is a paid consultant to Biosense Webster. The Scripps Prebys Cardiovascular Institute combines the expertise of Scripps Memorial Hospital and Scripps Green Hospital, with a skilled team of nearly 100 cardiologists. Scripps was recently designated as No. 20 in the U.S. News Top-Ranked Hospitals for cardiology and heart surgery.

Related Content

Boston Scientific, HeartLogic Heart Failure Diagnostic Service, MultiSENSE trial data, AHA Scientific Sessions 2016
News | Heart Failure| November 18, 2016
Boston Scientific recently announced results from the first clinical trial evaluating the performance of the HeartLogic...
atrial fibrillation, warfarin, dementia, Intermountain Medical Center Heart Institute, American Heart Association, AHA Scientific Sessions 2016
News | Atrial Fibrillation| November 15, 2016
Atrial fibrillation patients who use warfarin to lower risk of stroke are at higher risk of developing dementia than...
Medtronic, Claria MRI Quad CRT-D SureScan, FDA approval
Technology | Cardiac Resynchronization Therapy Devices (CRT)| November 15, 2016
Medtronic plc  has received U.S. Food and Drug Administration (FDA) approval for the Claria MRI Quad Cardiac...
catheter ablations, atrial fibrillation, stroke risk, Intermountain Medical Center Heart Institute study, AHA Scientific Sessions, American Heart Association
News | Ablation Systems| November 14, 2016
Atrial fibrillation patients with a prior history of stroke who undergo catheter ablation lower their long-term risk of...
Sponsored Content | Videos | Heart Valve Technology| November 14, 2016
William Abraham, M.D., FACC, discusses advances in heart failure device treatment technologies at the Transcatheter C
Siemens, FDA clearance, Xprecia Stride Coagulation Analyzer, point-of-care testing
Technology | Point of Care Testing| November 10, 2016
Siemens Healthineers announced U.S. Food and Drug Administration (FDA) 510(k) clearance for a hand-held portable...
genetic testing, sudden cardiac death of teen, Mayo Clinic Proceedings
News | Genetic Testing| November 09, 2016
The recent, sudden death of a 13-year-old boy resulted in more than 20 relatives being incorrectly diagnosed as having...
transcatheter aortic valve replacement, pacemakers, implantation, post-TAVR implantation, worse outcomes, study
News | EP Lab| November 09, 2016
Patients who undergo minimally invasive heart valve replacement, known as transcatheter aortic valve replacement (TAVR...
RFID inventory control in the cath lab, inventory management, cardinal

An example of RFID cabinets in a cath lab. As items are pulled from the cabinet, the inventory control system automatically determines what items were take out and adds them to the patient case. The system can also help locate recalled or expired items, and automatically track on-hand inventory to avoid manual counts.

Feature | Inventory Management| October 28, 2016 | Jean-Claude Saghbini
The healthcare industry’s transition to value-based care leaves no room for waste, and yet we know that inefficiency
Overlay Init