Feature | May 13, 2008| Cristen C. Bolan

MRI Shines New Light on Atrial Fibrillation

MRI enters the EP and cath lab to assist in treating atrial fibrillation.

Siemens' MAGNETOM Espree is a 1.5T open-bore MRI.

Atrial fibrillation (AF) affects more than 3.5 million Americans and is a major source of strokes and a precursor to potentially fatal deterioration of the heart. Although physicians in the last decade have treated the condition with radiofrequency ablation, overall success rates have been limited. A 2007 report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation noted that results are widely variable, due in part to differences in technique, follow-up, definitions of success, use of anti-arrhythmic therapy and in the experience and technical proficiency of the electrophysiologist.
A new approach that uses MRI as a pre-procedure diagnostic tool to visually demonstrate AF’s progression and location was presented as a poster at the American College of Cardiology (ACC) annual meeting in Chicago, IL, March 29 - April 1, 2008, by Nassir Marrouche, M.D., the director of the Atrial Fibrillation Program at the University of Utah School of Medicine.
MRI to facilitate AF treatment
In a study entitled “MR Imaging in the Electrophysiology (EP) Laboratory,” in which Dr. Marrouche is one of the authors, researchers note some of the challenges in treating AF include “efforts to maximize efficacy and safety, improve operator skills, better characterize left atrial anatomy and improve navigation within the cardiac chambers.”
In many cases, the applied treatment strategies to minimize the electrical effects of the pulmonary veins in AF have utilized a mapping catheter under fluoroscopic guidance to electrically isolate the pulmonary veins (PV) from the rest of the left atrium (LA). But the doctors in this study decided to integrate three-dimensional (3D) MRI to improve navigation in procedures requiring substrate-based ablation, for follow-up and localizing causes of post-procedural complications. “MRI offers the most detailed anatomic and physiologic information about normal and damaged myocardial tissue,” said Dr. Marrouche. The study concurs that “MRI...has vastly superior soft tissue contrast when compared to fluoroscopy and CAT scans and does not expose the patient to ionizing radiation.”
During the ablation procedure, Dr. Marrouche notes that MR angiograms help to improve anatomical maps, which are used in conjunction with other imaging modalities to determine appropriate sites for ablation. The modality also has very important roles in post-procedural assessment and follow-up, using delayed enhancement.
MRI outshines other imaging techniques
In comparing MRI to transesophageal echocardiogram (TEE), researchers were concerned with the invasiveness of TEE and that the complex morphology of the left atrial appendage may result in underestimation of the thrombus using TEE.
The researchers found that cardiac MRI allows for a convenient and useful alternative to TEE. “It is noninvasive, allows evaluation of cardiac morphology without any assumptions in regard to cardiac geometry and can be taken at the same time as other studies that are necessary for planning of the RF ablation procedure,” the study said. Adding, “In recent studies, MRI successfully detected thrombus with 100 percent sensitivity (verified utilizing TEE).” For treating AF, MRI demonstrated its
usefulness in preparing patients for the initial treatment “by helping to localize left atrial thrombus and defining anatomy of pulmonary veins, left atria and the surrounding structures.”
When performing radiofrequency ablation in the LA, where there is the possibility of damaging adjacent structures with potentially deadly side effects, they found “MRI serves an essential point in the planning of the procedure.”
In the cath lab, the researchers tested MRI utilization in periprocedure merged image navigation and for MRI and electroanatomic mapping systems. They found that “electroanatomic mapping systems, which allow for high-resolution MRI images to be merged with electrophysiological data acquired during the ablation procedure, help to alleviate some of the potential complications. The electroanatomic model also helps the physician performing the procedure to guide the catheter manipulation near pulmonary vein ostia and other complex structures, while helping to ascertain complications, which may involve other structures of concern such as the esophagus or aorta.”
The researchers believe that by building on the progress of other groups that have successfully applied MRI technology to interventional procedures targeting the ventricle, it will be possible to assess lesion size and change in tissue pathology in real time. They believe these steps will serve to greatly increase the curative rate for AF while simultaneously decreasing the complication rate.
Future applications of MRI for AF
At Heart Rhythm 2008, Dr. Marrouche will present findings from his animal studies on how MRI angiograms can be used effectively to monitor the effects of radiofrequency ablation on heart tissue during a procedure. Other research findings include the use of delayed-enhancement MRI imaging to assess scars and other collateral damage following a procedure, which will likely prove valuable in diagnosing post-procedural complications. As interventional MRI scanners become available, the study said, “MRI will become even more important than it now is in the treatment of atrial fibrillation patients.”
Dr. Marrouche is currently developing technology that can provide the imaging of scar tissue in real time using MRI. Within a single display, it will be possible to show lesion size and location and its relation to existing abnormal tissue. “In the future, the use of real-time MRI imaging may allow for accurate assessment of the catheter position in relation to the pulmonary veins, other key left atrial structures and the esophagus,” the study concluded. “Furthermore, histology-like imaging of lesion size, location and the identification of the presence of anatomic gaps between lesions will likely improve the formation of contiguous lines and thus improve efficacy,” indicated the study. This technique, Dr. Marrouche hopes, will prove valuable in diagnosing post-procedural complications and determining how they may be related to the RF parameters, which, he adds, will “greatly improve the success rate in complex patients.” Reference: Robert S. Oakes, M.D.; Nassir F. Marrouche, M.D.; Rob S. MacLeod; et al. MR Imaging in the Electrophysiology (EP) Laboratory, A Novel Method to Facilitate Treatment of Atrial Fibrillation.www.siemens.com/magnetom-world. 2007; 74-77.

Related Content

CMS, Overall Hospital Quality Star Rating, national distribution, quailty of care
News | Business| July 26, 2016
July 25, 2016 — The Centers for Medicare and Medicaid Services (CMS) announced that it expects to launch its new Over
Siemens Healthineers, Enterprise Services, ES, U.S. launch
Technology | Cardiac Imaging| July 19, 2016
July 19, 2016 — Siemens Healthineers recently introduced an expanded Services portfolio, known as Enterprise Services
Sponsored Content | Webinar | July 19, 2016
This webinar will explain the prevalence of MRI motion artifacts, outline the related financial and time burdens asso
gadolinium, ACR Manual on Contrast Media, update, FDA safety concerns
News | Magnetic Resonance Imaging (MRI)| July 12, 2016
The updated American College of Radiology (ACR) Manual on Contrast Media contains a statement addressing the U.S. Food...
MRI scanners, helium gas field discovery, Africa, future supply
News | Magnetic Resonance Imaging (MRI)| July 01, 2016
July 1, 2016 — Helium is essential for many modern technologies, including...
Vital Images, Vitrea 7 advanced visualization software, SCCT 2016
Technology | Advanced Visualization| June 30, 2016
Vital Images Inc. recently launched version 7 of its Vitrea advanced visualization software. This application-based...
DEFUSE-2 study, MRI, brain bleeding risk, post-stroke treatment, NIH

This image combines pre- and post-treatment scans from the same patient. Analysis of the two scans revealed that the area and size of post-treatment bleeding corresponded to blood-brain barrier disruption (shown in green, yellow and red) prior to therapy. Image courtesy of Richard Leigh, NINDS.

News | Stroke| June 29, 2016
In a study of stroke patients, investigators confirmed through magnetic resonance imaging (MRI) brain scans an...
BHF, Reflections of Research image competition, U.K., 4-D MRI, heart blood flow

This image shows blood flow within the main pumping chambers – the ventricles – on both sides of the heart and the vessels leaving the heart. The blue flow is blood that needs oxygen and is travelling to the lungs. The red flow is blood that has been through the lungs and received oxygen. Victoria Stoll of the University of Oxford is using this type of imaging to look at the blood flow within the hearts of people with heart failure, whose hearts are not pumping effectively.

News | Cardiac Imaging| June 24, 2016
The British Heart Foundation (BHF) announced the winners of its annual ‘Reflections of Research’ image competition,...
Biotronik, CardioStim 2016 Innovation Award, MRI AutoDetect, Ilivia ICDs
News | EP Lab| June 23, 2016
Biotronik announced it was the winner of the Cardiostim Innovation Award in the category “Best Practice Improvement”...
Overlay Init