Feature | February 05, 2013

Next-Generation CT Scanner Provides Better Images With Minimal Radiation

Toshiba Medical Systems NIH Clinical Study CT System

February 5, 2013 — A new computed tomography (CT) scanner substantially reduces potentially harmful radiation while still improving overall image quality. National Institutes of Health (NIH) researchers, along with engineers at Toshiba Medical Systems, worked on the scanner. An analysis of data on 107 patients undergoing heart scans found that radiation exposure was reduced by as much as 95 percent compared to the range of current machines, while the resulting images showed less blurriness, reduced graininess and greater visibility of fine details.

The machine recently received approval by the U.S. Food and Drug Administration (FDA), but more studies will be needed before it can be adopted for wide clinical use.

“CT scans are a great diagnostic tool for heart disease because we can obtain high-resolution 3-D images of the heart quickly and non-invasively,” said coauthor Andrew Arai, M.D., chief of the Cardiovascular and Pulmonary Branch at the NIH’s National Heart, Lung and Blood Institute (NHLBI). “However, the benefits of CT have been tempered by concerns over the radiation required to achieve these images. With this next-generation device, we are close to achieving the best of both worlds.”

Most CT scanners available in clinics have 64 rows of X-ray detectors. The new scanner has 320 detector rows, which allow imaging of a larger area of the body at one time. The new scanner also has a more powerful X-ray beam generator. And the gantry — the doughnut-shaped part of the CT machine — can complete a full rotation in 275 milliseconds. Current scanners top out at 350-millisecond rotations. In addition to hardware advances, the NHLBI team worked on the device settings and features with Toshiba to optimize radiation usage and image quality.

“These multiple advancements work together to allow us to image the entire heart within one heartbeat about 93 percent of the time,” noted lead study author Marcus Chen, M.D., a clinician in the NHLBI’s Advanced Cardiovascular Imaging Laboratory.

“These improvements could help clinicians identify problems in even the smallest blood vessels or enable them to conduct complicated tests like measuring blood flow in the heart while limiting radiation exposure,” Chen added.

Between July and October 2012, Chen and colleagues used the new scanner to perform CT angiographies — which look for plaque buildup or other problems in the coronary arteries — on 107 adults of varied height and weight, between the ages of 27 and 82. The research team then compared both the radiation dose and image quality of the new CT scans to 100 scans taken on a first-generation 320-detector row scanner at the NIH campus between January and April 2010.

The median effective radiation dose for the new scanner was 0.93 millisieverts (mSv), compared to 2.67 mSv for the first-generation scanner, and almost every patient (103 of 107) received less than 4 mSv of radiation. (millisieverts reflect how much radiation a body absorbs, so it can help determine potential health risks. The average person receives about 2.4 mSv of background radiation each year.) Nationwide, coronary CT angiography typically involves effective radiation doses between 5 and 20 mSv, depending on the patient's body type and the quality of the machine.

The study, which was published Jan. 22 online in the journal Radiology, was funded by the NHLBI intramural research program (HL006138-02). The CT machine was provided to the NHLBI by Toshiba Medical Systems through a cooperative research agreement.

The National Heart, Lung, and Blood Institute (NHLBI) is a component of the National Institutes of Health. NHLBI plans, conducts, and supports research related to the causes, prevention, diagnosis and treatment of heart, blood vessel, lung and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics.

For more information: www.nhlbi.nih.gov

Related Content

Oregon Health & Science University, OSHU, Toshiba Aquilion ONE ViSION Edition, CT, computed tomography

Image courtesy of Toshiba America Medical Systems

News | CT Angiography (CTA)| October 08, 2015
Oregon Health & Science University (OHSU) now offers patients one of the most advanced computed tomography (CT)...
Claudio Smuclovisky

Claudio Smuclovisky

Sponsored Content | Webinar | Computed Tomography (CT)| October 07, 2015
This webinar will provide an overview of the use and purpose of next generation model based reconstruction for cardia
Beaumont Hospital Royal Oak, first in Michigan, FFR-CT, HeartFlow Inc., heart failure

Image courtesy of HeartFlow Inc.

News | FFR Catheters| October 05, 2015
Beaumont Hospital - Royal Oak is the first in Michigan and one of just a handful in the United States to offer...
News | Heart Failure| October 02, 2015
Cyberonics Inc. announced results from the extension of the ANTHEM-HF clinical study (ENCORE Study). Results of the...
Tryton Side Branch Stent, clinical trial results, Catheterization and Cardiovascular Interventions

Tryton Side Branch Stent image courtesy of Tryton Medical

News | Stents Bifurcation| October 02, 2015
October 2, 2015 — Tryton Medical Inc.
Intact Vascular, TOBA II study, Tack Endovascular System

Image courtesy of Intact Vascular

News | Peripheral Arterial Disease (PAD)| October 01, 2015
Intact Vascular Inc. announced the U.S. Food and Drug Administration has granted conditional approval for a U.S. and...
Johns Hopkins, sticky gel, stem cells, rat hearts, heart attacks

Hydrogel applied to beating rat hearts improves stem cell uptake by the heart muscle and speeds up tissue healing after heart attack. Image courtesy of Johns Hopkins Medicine.

News | Stem Cell Therapies| September 29, 2015
A sticky, protein-rich gel created by Johns Hopkins researchers appears to help stem cells stay on or in rat hearts and...
News | Cath Lab| September 29, 2015
The Innovation Institute announced that Boston Scientific has signed an agreement to become the founding medical device...
Eluvia drug-eluting vascular stent system, 12-month primary patency, Boston Scientific, MAJESTIC trial, CIRSE

Image courtesy of Boston Scientific

News | Stents Peripheral| September 28, 2015
New 12-month clinical trial outcomes assessing the safety and performance of the Boston Scientific Eluvia drug-eluting...
predicting arrhythmias, mcgill university, alternans patterns
News | EP Lab| September 28, 2015
Researchers have discovered how to predict some cardiac arrhythmias several steps before they even occur. It’s a...
Overlay Init