Feature | August 21, 2013

Robot Treats Brain Clots with Steerable Needles

For the last four years, a team at Vanderbilt University has been developing a steerable needle system for “transnasal” surgery

August 21, 2013 — The idea that surgery to relieve the pressure caused by hemorrhaging in the brain is a perfect job for a robotic system is the basic premise of a new image-guided surgical system under development at Vanderbilt University. It employs steerable needles about the size of those used for biopsies to penetrate the brain with minimal damage and suction away the blood clot that has formed.

The system is described in an article accepted for publication in the journal IEEE Transactions on Biomedical Engineering. It is the product of an ongoing collaboration between a team of engineers and physicians headed by Robert J. Webster III, assistant professor, and Kyle Weaver, assistant professor of neurological surgery.

For the last four years, Webster’s team has been developing a steerable needle system for “transnasal” surgery: operations to remove tumors in the pituitary gland and at the skull base that traditionally involve cutting large openings in a patient’s skull and/or face. Studies have shown that using an endoscope to go through the nasal cavity is less traumatic, but the procedure is so difficult that only a handful of surgeons have mastered it.

Webster’s design, which he calls an active cannula, consists of a series of thin, nested tubes. Each tube has a different intrinsic curvature. By precisely rotating, extending and retracting these tubes, an operator can steer the tip in different directions, allowing it to follow a curving path through the body. The single needle system required for removing brain clots was actually much simpler than the multi-needle transnasal system.

The brain-clot system only needs two tubes: a straight outer tube and a curved inner tube. Both are less than 1/20th  of an inch in diameter. When a computed tomography (CT) scan has determined the location of the blood clot, the surgeon determines the best point on the skull and the proper insertion angle for the probe. The angle is dialed into a fixture, called a trajectory stem, which is attached to the skull immediately above a small hole that has been drilled to enable the needle to pass into the patient’s brain.

The surgeon positions the robot so it can insert the straight outer tube through the trajectory stem and into the brain. He also selects the small inner tube with the curvature that best matches the size and shape of the clot, attaches a suction pump to its external end and places it in the outer tube.

Guided by the CT scan, the robot inserts the outer tube into the brain until it reaches the outer surface of the clot. Then it extends the curved, inner tube into the clot’s interior. The pump is turned on and the tube begins acting like a tiny vacuum cleaner, sucking out the material. The robot moves the tip around the interior of the clot, controlling its motion by rotating, extending and retracting the tubes. According to the feasibility studies the researchers have performed, the robot can remove up to 92 percent of simulated blood clots.

“The trickiest part of the operation comes after you have removed a substantial amount of the clot. External pressure can cause the edges of the clot to partially collapse making it difficult to keep track of the clot’s boundaries,” said Webster.

The goal of a future project is to add ultrasound imaging combined with a computer model of how brain tissue deforms to ensure that all of the desired clot material can be removed safely and effectively.

For more information: www.vanderbilt.edu

Related Content

atrial fibrillation, stroke risk, aspirin vs blood thinners, JACC study
News | Antiplatelet and Anticoagulation Therapies| June 24, 2016
More than 1 in 3 atrial fibrillation (AF) patients at intermediate to high risk for stroke are treated with aspirin...
Zoll LifeVest wearable defibrillator, WEARIT-II Registry results, CardioStim EuroPace 2016
News | Defibrillator Monitors| June 21, 2016
Zoll Medical Corp. announced that patients experience a high one-year survival rate following use of the LifeVest...
Sponsored Content | Videos | Structural Heart Occluders| June 16, 2016
This is an animation of how a Gore Cardioform Septal Occluder is implanted for the transcatheter closure of ASDs or P
GE Healthcare, Getinge Group, Maquet, Discovery IGS 730 angiography system, Magnus operating table, integrated, hybrid OR

GE Healthcare's Discovery IGS 730 angiography system

Technology | Hybrid OR| June 13, 2016
GE Healthcare and Getinge Group announced the U.S. launch of a new, highly flexible angiography solution for surgery,...
Inventory management, cath lab inventory management, automated inventory management
Sponsored Content | Webinar | Inventory Management| June 10, 2016
Do you find products are stocked based on intuition rather than actual utilization based on clinical demand?
hemmorhagic stroke, blood pressure management, ATACH II trial, NINDS

Brain scan showing damage caused by bleeding during a hemorrhagic stroke. Image courtesy of Adnan I Qureshi, M.D., University of Minnesota.

News | Stroke| June 09, 2016
June 9, 2016 — An international stroke study
heart failure, muscle bleeding, British Cardiovascular Conference, MRI
News | Heart Failure| June 08, 2016
The amount a heart ‘bleeds’ following a heart attack can predict the severity of future heart failure, according to...
Biotronik, ORIENT trial results, EuroPCR 2016, Orsiro DES, hybrid drug-eluting stent
News | Stents Drug Eluting| June 03, 2016
Biotronik announced results establishing non-inferiority of the Orsiro hybrid drug-eluting stent (DES) to the Resolute...
News | Drug-Eluting Balloons| June 03, 2016
June 3, 2016 — Cardionovum GmbH recently announced the completion of enrollment of the RAPID trial.
Overlay Init