Feature | March 27, 2012

Study Shows Significant Mismatch Between Angiography, FFR Evaluation

The hemodynamic flow effect of a plaque rupture, as detected by FFR.

March 24, 2012 Coronary angiography is unable to accurately predict the severity of vessel narrowing, suggesting fractional flow reserve (FFR) functional tests should be added to help determine if a patient needs revascularization. This was according to research presented from the IRIS FFR-DEFER trial at the American College of Cardiology's (ACC) 61st Annual Scientific Session this week in Chicago. 

Seeking to improve physicians’ decision-making process when determining if a patient needs revascularization, a South Korean research team compared two different methods of evaluating arterial narrowing: coronary angiography and FFR. Currently, coronary angiography is commonly used to determine the need for revascularization, while FFR is included in practice guidelines but less frequently utilized. FFR uses an catheter probe to measure the level of blood flow before and after a stenotic lesion to determine how much the narrowing is affecting arterial function.

Specifically, the team wanted to determine why there is often a discrepancy, called a “visual-functional mismatch,” between the findings of these tests when performed on the same vessel.

“There are often notable discrepancies between the angiographic diameter stenosis and the physiologic significance of the lesion,” said lead investigator Seung-Jung Park, M.D., Ph.D., professor of medicine at Asan Medical Center in Seoul, South Korea. 

“We conducted the study to provide a comprehensive understanding of the factors responsible for this ‘visual-functional mismatch,’ which we believed would be helpful to overcome interventionalists’ excessive preoccupation with using angiography to decide whether to treat or not to treat,” he said. 

The researchers enrolled 1,000 patients with 1,129 lesions between November 2009 and June 2011 at a single center in Seoul, South Korea. Sixty-three patients had left main coronary artery (LMCA) lesions (a more complex type of narrowing; number of lesions=63), while 937 patients had non-LMCA lesions (number of lesions=1,066). The researchers completed three tests on each lesion: coronary angiography, FFR and intravascular ultrasound. They then examined the occurrence of visual-functional mismatch and analyzed the factors that led to the discrepancies between coronary angiography and FFR. 

They found that among patients with non-LMCA (less complex) lesions, there were 605 lesions in which coronary angiography showed that the vessel had narrowed by more than 50 percent (suggesting that the heart may not be getting enough oxygen, a condition called “myocardial ischemia”). Of these lesions, 343 (57 percent) showed a FFR of greater than or equal to 0.80 (no more than a 20 percent reduction in blood flow, suggesting that ischemia was unlikely), resulting in a visual-functional mismatch. 

Conversely, among the 461 non-LMCA lesions with less than or equal to 50 percent vessel narrowing (suggesting that ischemia was unlikely), 75 (16 percent) had an FFR of less than 0.80 (more than a 20 percent reduction in blood flow, suggesting that ischemia was likely), resulting in a “reverse” visual-functional mismatch. 

In the LMCA group, mismatch was seen in 8 lesions (35 percent). Reverse mismatch was seen in 16 lesions (40 percent).  

Using statistical analysis and intravascular ultrasound (IVUS), the researchers determined several factors that were predictors of mismatch, including: older patient age (adjusted odds ratio [AOR] 1.04, p<0.001), non-left anterior descending artery location (AOR 3, p<0.001), the absence of plaque rupture (AOR 2.6, p=0.004), short lesion length (AOR 1.03, p<0.001), a large minimal lumen cross-sectional area (AOR 2, p=0.001), a smaller plaque burden (AOR 1.05, p<0.001) and a greater minimal lumen diameter (AOR 1.09, p=0.040). 

The predictors of reverse mismatch included younger age (AOR 1.04, p=0.003), left anterior descending artery location (AOR 5.4, p<0.001), the presence of plaque rupture (AOR 3.2, p=0.011), smaller minimal lumen cross-sectional area (AOR 2.9, p<0.001) and larger plaque burden (AOR 1.03, p=0.027). 

According to the researchers, the results showed that discrepancies between the two tests were caused by clinical and lesion-specific factors that are often unable to be identified from coronary angiography alone. They concluded that coronary angiography could not accurately predict the functional results of FFR and that FFR should be included in the assessment process before cardiac specialists make decisions about revascularization.

For more information: www.acc.org

Related Content

FDA, CDRH, national evaluation system, medical device development
Feature | Business| May 04, 2016
The U.S. Food and Drug Administration (FDA) announced it is building the foundations of a national evaluation system to...
radiation dose in the cath lab
News | Radiation Dose Management| May 02, 2016
May 2, 2016 — Starting at the Society for Cardiovascular Angiography and Interventions (SCAI) 2016 annual meeting May
Feature | Business| April 28, 2016 | Dave Fornell
 
Technology | Stents Peripheral| April 27, 2016
Veniti Inc. announced the first successful treatment with the Vici Verto Venous Stent System of a patient suffering...
Auris Surgical Robotics, acquisition, Hansen Medical
News | Robotic Systems| April 26, 2016
Auris Surgical Robotics Inc. and Hansen Medical Inc. announced that they have signed a definitive merger agreement...
Siemens Sensis Vibe, hemodyanamics system

Siemens released the Sensis Vibe hemodyanamics system at ACC.16. The newer system offers better integration of cath lab data into cath lab reports and the electronic medical record (EMR).

Feature | ACC| April 25, 2016 | Jon Brubaker, MBA, RCVT, Tom Watson, BS, RCVT, and Sabrina Newell MS, RCS
There were several trends seen in new cardiovascular technologies showcased on the expo floor at the 2016 American...
Medtronic, Drug-Filled Stent, RevElution Trial results, ACC.16, CE Mark
News | Stents Drug Eluting| April 21, 2016
Medtronic plc announced new clinical data from one of the endpoints in the RevElution Trial for its novel, next-...
Boston Scientific, Fetch 2 aspiration catheter, Class 1 recall
News | Thrombectomy Devices| April 20, 2016
April 20, 2016 — Boston Scientific Corp. announced a U.S.
ischemic postconditioning, STEMI patients, clinical outcomes, ACC.16
News | Cath Lab| April 19, 2016
A large randomized controlled trial of ischemic postconditioning in patients who had experienced ST-segment elevation...
STEMI, delayed or deferred stent implantation, DANAMI-3-DEFER trial, ACC.16
News | Cath Lab| April 18, 2016
Delayed or deferred stent implantation in patients showed no clinical benefit in patients experiencing the deadliest...
Overlay Init