Feature | January 07, 2013

University of Wisconsin Licenses Dose-Optimized CT Scan Protocols to GE Healthcare

January 7, 2013 — At RSNA 2012, GE Healthcare announced a first-of-its-kind agreement with the University of Wisconsin (UW) School of Medicine and Public Health for the purpose of providing physicians with more tools to optimize radiation dose, take clinically-useful images, and potentially reduce the frequency of repeat computed tomography (CT) scans. 

Clinical professionals at the School of Medicine and Public Health, a recognized leader in lower-dose CT imaging, will develop a suite of protocols, which will be regularly updated and improved; GE will make them available, along with GE Healthcare reference protocols, to better serve its customers.

GE Healthcare and the University of Wisconsin also plan to make these protocols available to users of many of GE Healthcare’s current CT systems.

“We are excited to share our protocols with current and future GE Healthcare CT users,” said Myron Pozniak, professor of radiology and chief of the section of abdominal CT, UW-Madison. “At the University of Wisconsin School of Medicine and Public Health, we’ve built a rigorous process for protocol development and quality control, and these protocols will be the result of that process.”

The protocols are being designed and optimized for multiple, very specific, clinical applications. Within each clinical application, the UW team plans to develop several protocols for patients of different sizes ranging from small children to large adults.

The agreement also calls for the School of Medicine and Public Health to continue to develop and improve the protocols so that end users would receive regular updates as improvements are made.  

In addition to clinical and lower dose opportunities of these protocols, there is a potential real savings to end users. According to a presentation from the William W. Backus hospital at the 2011 annual meeting of the RSNA, the cost of reviewing and modifying 30 protocols for dose optimization is approximately $165,050 a year. Each site would still be ultimately responsible for any protocol implemented in their program, but they may be able to leverage the foundational ground work UW-Madison has laid.

Customers around the U.S. continue to show substantial interest in GE Healthcare’s Blueprint for Lower Dose Benchmark program, which was launched in June 2012. GE worked with four leading health systems to pilot the program for CT. 

The Blueprint Benchmark can help a healthcare provider understand the strengths and opportunities within its CT imaging program as compared to industry guidelines and best and better practices. Based on information provided by the healthcare provider, GE’s Low Dose Architects provide a report that can serve as a “blueprint” for the healthcare provider as it works to put in place the people, processes and technology to define and enhance their radiation dose management goals. 

In addition to the Blueprint, GE Healthcare’s lower-dose vision equips radiologists and radiographers with technologies that can help them reduce patient dose and improve image quality. These solutions include:

  • ASiR, a lower dose image reconstruction technology enabler, installed on more than 1,800 GE CT systems worldwide that has provided more than 20 million scans to date.;
  • Veo, the world’s first ever model based iterative reconstruction that enables CT imaging under 1 millisievert with profound clarity;
  • CT Dose Check, a feature that helps users manage exposure pre-scan through notifications and alerts to operators;
  • Free radiation safety iPad apps and lower-dose webinars offering education and CE credits to healthcare professionals globally;
  • DoseWatch, a multi-modality dose tracking and reporting tool; and
  • Innova interventional imaging systems designed to maximize dose efficiency, reduce quantity and simplify dose management.

For more information: www.gehealthcare.com

Related Content

Hitachi Medical, Scenaria CT scanner, All-Inclusive Support program
Technology | Computed Tomography (CT)| May 02, 2016
May 2, 2016 — Hitachi Medical Systems America Inc.
radiation dose in the cath lab
News | Radiation Dose Management| May 02, 2016
May 2, 2016 — Starting at the Society for Cardiovascular Angiography and Interventions (SCAI) 2016 annual meeting May
coronary CT angiography, CCTA, SCOT-HEART trial substudy, SCCT
News | Computed Tomography (CT)| April 26, 2016
The results of a secondary analysis of the SCOT-HEART trial show that coronary computed tomography angiography (CCTA)...
Toshiba, Aquilion Lightning CT, 50 kW generator, FDA clearance
News | Computed Tomography (CT)| April 20, 2016
April 19, 2016 — Toshiba America Medical Systems Inc.’s Aquilion Lightning...
FFR-CT, heartflow
Feature | CT Angiography (CTA)| April 15, 2016 | Jeff Zagoudis
Fractional flow reserve-computed tomography (FFR-CT) is still in the early stages of clinical implementation in the U
TAVR runoff image

A 3-D CT reconstruction of a TAVR run-off image to assess the femoral access route using Toshiba's Aquillion One and Vital Images advanced visualization technologies. 

Feature | Heart Valve Repair| April 15, 2016
April 15, 2016 — Accurate and precise anatomical information is crucial to successful transcatheter aortic valve repl
computed tomography, CT scans, electronic medical devices, interference, FDA
News | Computed Tomography (CT)| April 13, 2016
The U.S. Food and Drug Administration (FDA) has received a small number of reports of adverse events that are believed...
Sponsored Content | Videos | CT Angiography (CTA)| April 12, 2016
A discussion on the adoption rate of FFR-CT with Dr. Campbell Rogers, chief medical officer of HeartFlow.
FFR-CT, HeartFlow, PLATFORM trial, one-year results, ACC 2016
News | CT Angiography (CTA)| April 05, 2016
Novel technology developed by HeartFlow Inc. significantly reduces the need for invasive procedures to diagnose...
Overlay Init