News | Radiopharmaceuticals and Tracers | May 13, 2016

NorthStar Medical Radioisotopes Expanding University of Missouri Research Reactor Operations

Von Gahlen International to design and install new high-capacity filling line to quadruple molybdenum-99 dispensing capacity

May 13, 2016 — NorthStar Medical Radioisotopes LLC is enhancing its production operations at the University of Missouri Research Reactor (MURR) in Columbia, Mo., adding a new filling line that will quadruple the company’s capacity there to dispense the medical radioisotope molybdenum-99 (Mo-99).

NorthStar has contracted with Von Gahlen International Inc. to design and install the system, which will include a high-capacity DPharm unit to fill source vessels quickly, along with companion nuclear radiation containment chambers, or “hot cells.” Installation is scheduled to begin in November, with full operability targeted for the first half of 2017.

With the expansion, NorthStar is investing more than $3 million in its development of new processes for producing Mo-99 without the use of highly enriched uranium (HEU) and becoming the first producer of Mo-99 in the United States in more than 25 years.

Mo-99 is the parent isotope of technetium-99m (Tc-99m), the most widely used radioisotope in medical diagnostic imaging. It is used in approximately 40,000 procedures worldwide daily to diagnose and stage cancer, heart disease, infection, inflammation and other conditions.

Currently, all Mo-99 is produced overseas and most is produced in aging reactors using weapons-usable HEU, creating safety and national security concerns and the risk of product shortages. NorthStar is developing two non-uranium-based production processes that would help establish a domestic supply of Mo-99 and resolve the issues related to nuclear proliferation and the disposal of highly toxic radioactive waste.

In addition to significantly increasing dispensing capacity at MURR, the new filling line will be able to prepare source vessels containing Mo-99 generated from natural or enriched molybdenum-98 (Mo-98) targets. Enriched targets have higher concentrations of Mo-98 and produce approximately three times more Mo-99 than natural targets – 18-19 curies (Ci) compared to 6 Ci. A curie is a unit of radioactivity.

MURR will use the neutron capture production process being developed by NorthStar to supply Mo-99 through its Drug Master File. A Mo-98 target is bathed in neutrons, transforming a portion of it into Mo-99. The Mo-99 is extracted from the target and purified, and then moved to the NorthStar dispensing operation housed in the same facility. Waste created during Mo-99 production is minimal and relatively benign, making its disposal safe and inexpensive.

Source vessels are then filled with a Mo-99 solution using the DPharm and then shipped to customers for use with the RadioGenix isotope separation system. The RadioGenix system is used to extract the Tc-99m from the Mo-99, giving the radiopharmacy the key ingredient needed to create patient-ready doses of medical isotopes.

For more information: www.northstarnm.com

Related Content

Videos | Nuclear Imaging | November 06, 2019
Robert Hendel, M.D., explains some of the new cardiac radiotracers in the pipeline that were discussed in sessions at...
With the advent and optimization of nuclear scintigraphy protocols using bone-avid radiotracers, cardiac amyloidosis caused by transthyretin protein (ATTR) can now be diagnosed noninvasively without a costly tissue biopsy. The radiotracer 99mTc-pyrophosphate (99mTc-PYP) binds to deposited ATTR amyloid fibrils in the myocardium and can be visualized using planar and SPECT imaging. The image shows how SPECT allows the reader to distinguish between blood pool activity and radiotracer uptake.

With the advent and optimization of nuclear scintigraphy protocols using bone-avid radiotracers, cardiac amyloidosis caused by transthyretin protein (ATTR) can now be diagnosed noninvasively without a costly tissue biopsy. The radiotracer 99mTc-pyrophosphate (99mTc-PYP) binds to deposited ATTR amyloid fibrils in the myocardium and can be visualized using planar and SPECT imaging. This is Figure 2, showing how SPECT imaging allows the reader to distinguish between blood pool activity (ventricular cavity, etc) and myocardial activity and identify regional myocardial differences in radiotracer uptake.

Feature | Nuclear Imaging | July 22, 2019 | Christopher A. Hanson M.D., and Jamieson M. Bourque M.D., MHS
Cardiac amyloidosis is a highly morbid and underdiagnosed infiltrative cardiomyopathy that is characterized by the de
GE Healthcare Recalls Millennium Nuclear Medicine Systems
News | Nuclear Imaging | November 15, 2018
GE Healthcare announced it is recalling its Millennium Nuclear Medicine Systems due to an incident in which the the top...
Technology and Radionucleotide Development Will Fuel Mobile Gamma Camera Adoption
News | Nuclear Imaging | September 27, 2018
Advancements in healthcare technology, particularly in the surgery category, have led to an increasing adoption of...
Videos | Nuclear Imaging | August 21, 2018
Rami Doukky, M.D., professor of medicine, preventive medicine and radiology, and chief of the Division of Cardiology
ASNC Announces Keynote Speakers for 2018 Annual Scientific Session
News | Nuclear Imaging | August 08, 2018
August 8, 2018 — The American Society of Nuclear Cardiology’s (ASNC) Annual Scientific Session, ASNC2018, will kick o
A myocardial perfusion exam performed on the Siemens Biograph Vision PET-CT system.

A myocardial perfusion exam performed on the Siemens Biograph Vision PET-CT system.

Feature | Nuclear Imaging | June 15, 2018 | Dave Fornell, Editor
Nuclear imaging technology for both sing...
Overlay Init