Feature | July 27, 2010| Mariell Jessup, M.D., professor of medicine, University of Pennsylvania School of Medicine

Novel Therapies for Advanced Heart Failure

New approaches include mechanical heart pumps, drug and gene therapies

Mariell Jessup, M.D., is a professor of medicine at the University of Pennsylvania School of Medicine.

Heart failure is a progressively debilitating disease that dramatically decreases the life expectancy and quality of life of affected patients. Nearly 5.8 million Americans are diagnosed with heart failure today, according to annual American Heart Association statistics. Heart failure contributes to more than 280,000 deaths annually, with a one-year mortality rate of approximately 20 percent, and a five-year mortality estimated at 50 percent.

Heart failure accounts for nearly 20 percent of total hospital admissions; annual hospitalizations with a primary diagnosis of heart failure in the U.S. exceed 1 million. The incidence of heart failure has not declined within the past 20 years, but the survival after onset has increased in younger patients and men. The care of patients with heart failure will lead to $39.2 billion direct and indirect costs to the United States in 2010.

Heart Failure Characteristics

Heart failure is characterized by chronic, persistent activation of the renin-angiotensin-aldosterone system as well as the sympathetic nervous system. The neurohormonal blockade of these systems has been the mainstay of heart failure therapy for more than 20 years. The implementation of angiotensin-converting enzyme (ACE) inhibitors and antiandrenergic therapies has revolutionized the treatment of heart failure to slow the progression of heart failure and improve survival. The current regimen for managing heart failure includes ACE-inhibitors, angiotensin-receptor antagonists, beta-blockers, aldosterone antagonists and diuretics; certain patients are candidates for a special pacemaker called cardiac resynchronization therapy (CRT) and others undergo coronary bypass surgery.

Pumps and Transplants

Nevertheless, heart failure is a progressive disease with no cure. As the disease progresses, existing treatment options for advanced heart failure are limited to left ventricular assist device implantation (LVAD) or cardiac transplant. Patients who have severe heart failure and primary myocardial disease, ischemic cardiomyopathy, or congenital heart disease may be considered for cardiac transplantation, but only approximately 2,000 heart transplants are done each year in the United States. Moreover, many patients depend on mechanical cardiac support devices while waiting for a transplant donor organ to become available. Additionally, many patients with end-stage heart failure are not considered for transplantation because of advanced age or other associated morbidities.

Drug and Gene Therapies

Therefore, there is a significant unmet need for novel approaches beyond the standard medical regimens currently used to treat advanced heart failure patients. The majority of current clinical studies are investigations with new approaches to reduce the mortality in acute heart failure, e.g. patient admitted to the hospital with exacerbated symptoms of heart failure. One eagerly awaited trial is the ASCEND-HF study (Acute Study of Clinical Effectiveness of Nesiritide in Subjects With Decompensated Heart Failure), which enrolled 7,000 patients worldwide and is designed to evaluate whether treatment with nesiritide improves patient outcomes or heart failure symptoms compared with placebo.

Another novel approach to treat heart failure has been to target the up-regulation of sarcoplasmic reticulum (SR) Ca2+ ATPase pump (SERCA2a). SERCA2a is critical in controlling the movement of Ca2+ between the SR and cytoplasm; it regulates Ca2+ cycling and contractility in the myocardium. SERCA2a expression is significantly reduced in failing hearts, leading to abnormal Ca2+ handling and deficient contractility, a defect that could be corrected by restoring SERCA2a levels. Additionally, in animal models, cardiac energetics and electrical remodeling improved after SERCA2a gene transfer.

The first-in-human trial to utilize this novel gene therapy, CUPID (Calcium Up-regulation by Percutaneous administration of gene therapy In cardiac Disease) was recently presented in Berlin. It is noteworthy that the procedure to infuse Mydicar, a genetically targeted enzyme replacement therapy that restores SERCA2a levels via gene transfer with a recombinant adeno-associated vector (AAV), could be performed in an outpatient setting. The results showed significant improvements in clinical outcomes and symptoms in patients with advanced heart failure treated with Mydicar. These patients significantly improved their heart failure symptoms, exercise tolerance, serum biomarkers and cardiac function. These encouraging results will have to be confirmed in larger clinical trials but may address the unmet need for novel therapeutic approaches to treat advanced heart failure.

Related Content

St. Jude Medical, ADO II AS trial, congenital heart disease, PDA, Amplatzer Duct Occluder II AS
News | Congenital Heart| October 19, 2016
St. Jude Medical Inc. announced the launch of the ADO II AS (AMPLATZER Duct Occluder II Additional Sizes) pediatric...
Lantheus, flurpiridaz F-18, myocardial perfusion imaging, MPI, cardiac stress testing, ASNC 2016
News | Radiopharmaceuticals and Tracers| October 17, 2016
Lantheus Holdings Inc. announced in late September that sub-analysis data from the first Phase 3 study of flurpiridaz F...
Medtronic, FIRE AND ICE trial, Arctic Front, cryoballoon catheter ablation, radiofrequency RF ablation, study results, Asia Pacific Heart Rhythm Society Scientific Sessions
News | Ablation Systems| October 17, 2016
Medtronic plc last week unveiled new health economic analysis data from the FIRE AND ICE trial that favor cryoballoon...
transcarotid artery revascularization, TCAR Surveillance Project, Society for Vascular Surgery Patient Safety Organization, SVS PSO,
News | Stents Carotid| October 13, 2016
A surveillance project to evaluate the safety and effectiveness of transcarotid artery revascularization (TCAR) in...
Shockwave lithoplasty system, VIVA 16, Vascular Interventioanl Advances, VIA Physicians, late-breaking endovascular clinical trial results
News | Cath Lab| October 12, 2016
VIVA (Vascular Interventional Advances) Physicians announced a number of highly anticipated late-breaking clinical...
News | Renal Denervation| October 11, 2016
Awards from the National Institutes of Health’s Common Fund are supporting research on the peripheral nervous system,...
ZipLine Medical, Zip Surgical Skin Closure, cath lab time savings, PACE study
News | EP Lab| October 10, 2016
October 10, 2016 — ZipLine Medical Inc.
Mercator MedSystems, Bullfrog Micro-Infusion Device, DANCE trial, VIVA 2016, 13-month results
News | Peripheral Arterial Disease (PAD)| October 07, 2016
Mercator MedSystems recently announced that 13-month data from the DANCE trial was presented during a late-breaking...
Heartware HVAD, ventricular assist device, artificial heart, Medtronic
News | October 05, 2016
October 5, 2016 — Medtronic said two previously communicated global voluntary recalls related to the HeartWare Intern
Keystone Heart, TriGuard Embolic Protection Device, Neuro-TAVR study, brain lesions, American Journal of Cardiology
News | Heart Valve Technology| October 03, 2016
Keystone Heart Ltd. announced data recently published in the American Journal of Cardiology demonstrating new brain...
Overlay Init