News | March 11, 2015

Digitizing Heart Cell Crosstalk May Help Locate Epicenters of Dangerous Heart Rhythms

Pinpointing the origin of arrhythmias could lead to new, more precise therapies

arrhythmia, heart cells, mapping, crosstalk, Johns Hopkins, Ashikaga

March 11, 2015 — A team of scientists led by Johns Hopkins cardiologist and biomedical engineer Hiroshi Ashikaga, M.D., Ph.D., has developed a mathematical model to measure and digitally map the beat-sustaining electrical flow between heart cells.

The work, the scientists say, could form a blueprint for vastly more precise imaging tests that capture cell-to-cell communication and pinpoint the tiny clusters of cells at the epicenter of complex, life-threatening arrhythmias. Such imaging approaches, they add, would enable precision-targeted, minimally invasive treatments that eliminate rhythm-disrupting hotspots in the heart’s electrical system.

The approach, described online March 4 in the Journal of the Royal Society Interface, is inspired by so-called information theory and built on the premise that cell-to-cell interaction follows a classic model of communication consisting of source, transmitter and receiver. Translating those cellular “conversations” into digital form — a series of zeroes and ones that can be easily read and imaged by a computer — can help spot breakdowns in communication that form the epicenters of dangerous rhythm disturbances.

“Successful arrhythmia treatment depends on correctly identifying the epicenter of the malfunction,” Ashikaga says. “We cannot begin to develop such precision-targeted therapies without understanding the exact nature of the malfunction and its precise location. This new model is a first step toward doing so.”

At the heart of the new model is the idea that heart muscle cells act as analog-to-digital converters, taking up information from their surroundings, converting or interpreting the information, and transmitting the message to neighboring cells. Ashikaga and colleagues say that capturing and quantifying information transmitted from cell to cell can help “catch” aberrant signals — or communication breakdowns — as they trigger electrical firestorms that cause the heart to beat abnormally and compromise its ability to pump blood.

The location of such communication glitches has been notoriously challenging to pinpoint with standard electrocardiograms, or EKGs, which provide limited information and are most helpful in diagnosing the type of arrhythmia rather than the exact cellular origin of the rhythm disturbance.

In their new model, the researchers mapped cellular information flow by creating computer representations of normal and abnormal heartbeats, ranging from simpler benign arrhythmias with well-defined epicenters to dangerous rhythms that arise in multiple hotspots. The scientists then “digitized” the electric flow by converting the electrical signals transmitted by cells into bits — the zeroes and ones that are the basic units of information in computing and digital communications.

Next, they measured how much information was generated, transmitted and received during normal and abnormal heart rhythms and plotted the information onto a 2-D map to create an image of the arrhythmia.

The different types of arrhythmias generated markedly distinct spatial profiles. By contrast, regular EKG tracings of the same rhythm disturbances looked similar with a lot of overlapping features, an observation suggesting that quantifying and digitizing information flow inside the heart would far more reliably distinguish one form of arrhythmia from another.

Current therapies for dangerous rhythms, including medication, catheter ablation or implanted defibrillators that shock the heart back into normal rhythm, are not always effective or have serious downsides. But pinpointing the origin of dangerous arrhythmias could lead to new therapies and improve the precision of surgical ablation, a minimally invasive procedure that uses heat energy to burn the hotspots that trigger aberrant rhythms. Ablation works well for simple rhythm disorders with a well-defined hotspot, but is far less effective for complex arrhythmias originating from multiple hotspots that cannot be precisely located with standard imaging techniques.

For more information: www.hopkinsmedicine.org

Related Content

Computer Simulations May Treat Most Common Heart Rhythm Disorder

The OPTIMA (Optimal Target Identification via Modelling of Arrhythmogenesis) simulator uses contrast-enhanced MRI scans to create personalized digital replicas of a patient's heart to guide catheter abation for atrial fibrillation. Image courtesy of Patrick M. Boyle and Natalia A. Trayanova.

News | EP Mapping and Imaging Systems | August 19, 2019
Scientists at Johns Hopkins have successfully created personalized digital replicas of the upper chambers of the heart...
Charge Density Mapping Eliminates Repeat Ablation for Atrial Fibrillation at One Year
News | EP Mapping and Imaging Systems | July 15, 2019
Acutus Medical announced the publication of the UNCOVER AF study in Circulation: Arrhythmia and Electrophysiology. The...
Innovative Health Receives FDA Clearance to Reprocess Pentaray Nav Eco High-density Mapping Catheter
News | EP Mapping and Imaging Systems | July 05, 2019
Single-use cardiology medical device reprocessing company Innovative Health, received U.S. Food and Drug Administration...
VIVO 3-D Cardiac Mapping System Cleared by FDA
Technology | EP Mapping and Imaging Systems | July 01, 2019
Catheter Precision Inc. announced that the U.S. Food and Drug Administration (FDA) has cleared its new VIVO (View into...
Algorithm Steers Catheters to Right Spot to Treat Atrial Fibrillation

Using human AFib simulations, the researchers demonstrated that their technique can stop the catheter at the right target and identify the source type with a 95.25 percent success rate. This new algorithm also is effective in scarred tissue, which makes ablation more challenging, and has a 99 percent detection rate regardless of the scar size. Image courtesy of Florida Atlantic University.

News | EP Mapping and Imaging Systems | May 28, 2019
Researchers have developed the first algorithm that can locate patient-specific ablation targets for atrial...
Acutus Medical Announces Rhythm Xience Acquisition, New Partnerships at HRS 2019

Acutus Medical's acquisition of Rhythm Xience brings the Flextra steerable introducer sheath into Acutus Medical's product portfolio.

News | EP Mapping and Imaging Systems | May 17, 2019
At the 40th annual Heart Rhythm Scientific Sessions, May 8-11 in San Francisco, Acutus Medical announced the agreement...
Electromechanical Wave Imaging (EWI) is a new, high-frame rate 3-D rendered ultrasound technique that can noninvasively map the electromechanical activation of heart rhythm. This example shows the ECG tracings compared to the EWI image of the heart.

Electromechanical Wave Imaging (EWI) is a new, high-frame rate 3-D rendered ultrasound technique that can noninvasively map the electromechanical activation of heart rhythm. This example shows the ECG tracings compared to the EWI image of the heart.

Feature | EP Mapping and Imaging Systems | May 15, 2019 | Dave Fornell, Editor
May 15, 2019 — A new study shows electromechanical wave imaging is capable of localizing arrhythmias including atrial
Philips and Medtronic Collaborate on Image-guided Atrial Fibrillation Treatment
News | EP Mapping and Imaging Systems | May 09, 2019
Philips announced a collaboration with Medtronic to further advance treatment of paroxysmal atrial fibrillation (PAF),...
Acutus Medical Receives FDA Clearance for Second-generation AcQMap Platform
Technology | EP Mapping and Imaging Systems | April 26, 2019
Acutus Medical announced U.S. Food and Drug Administration (FDA) clearance of its second-generation AcQMap platform,...
Acutus AcQMap Imaging System Helps Eliminate Arrhythmia With Single Ablation
News | EP Mapping and Imaging Systems | January 28, 2019
Acutus Medical announced 12-month data from the UNCOVER-AF trial investigating the use of the AcQMap advanced cardiac...
Overlay Init