News | Medical 3-D Printing | March 23, 2018

3-D Printed Models Improve Medical Student Training

Less expensive and more realistic 3-D models of blood vessels may offer alternative to the commercial standard

3-D Printed Models Improve Medical Student Training

March 23, 2018 — A relatively inexpensive 3-D-printed model of a patient's blood vessels is as effective as current commercially available models for training medical students in interventional radiology vascular access, according to a study presented at the Society of Interventional Radiology's 2018 Annual Scientific Meeting, March 17-22 in Los Angeles.

"We've come up with a viable method for creating something that's inexpensive and also customizable to individual patients," said Alexander Sheu, M.D., an interventional and diagnostic radiology resident at Stanford University School of Medicine, and lead author of the study. "The current model used to train medical students lacks the ability to replicate a patient's anatomy. Our 3-D-printed model will provide students a more realistic experience, allowing for better preparation before they perform procedures on real patients."

Interventional radiologists commonly treat patients using less-invasive options to surgery that involve inserting a catheter through a major artery under ultrasound guidance in order to reach internal organs or blood vessels. The researchers tested medical students' comfort in using a 3-D-printed model, compared to commercially available models, to simulate ultrasound-guided access through the femoral artery in the groin.

Thirty-two students were randomized to practice with the 3-D-printed model or the commercial model in a simulation experience developed by the authors of the study. Prior to the simulation exercise, 73 percent of the 3-D group and 76 percent of the commercial-model group indicated that they did not feel confident in performing the procedure. After the training, most of the 3-D model and commercial model trainees agreed that their respective models were easy to use (93.3 percent and 94.1 percent) and helpful for practice (93.3 percent and 94.1 percent). Additionally, confidence in performing the procedure, known as femoral artery access, increased a similar amount in both groups.

"Now that we know that a 3-D-printed model is just as effective at training medical students in this type of procedure, this simulation experience can be made available to even more trainees and potentially improve procedural skills for residents, fellows and attendees," said Sheu. "We foresee this really making an impact in the world of interventional radiology training."

Medical simulation exercises are playing an increasingly larger role in medical training; especially in the field of interventional radiology. Many commercially available devices cost between $2,000 and $3,000 each, while 3-D printing has the ability to produce practice models inexpensively and more realistically, the authors said.

The 3-D printing technology can reproduce a patient's exact vessels based on a computed tomography (CT) scan and produce an ultrasound-compatible vascular access model that is unique to that patient's anatomy. To adapt the 3-D printing technology to their needs, the researchers used a tissue-mimicking material that was durable to withstand punctures, but still felt realistic. This tailoring allows trainees to practice with variations in anatomy before they encounter them during a procedure, which may help to lower complication rates, researchers said.

As a result of these findings, the research team aims to extend this training to resident and fellow trainees and to study additional possible benefits of these devices. In addition, the team may develop 3-D-printed models for other parts of the body with arteries accessed in interventional radiology.

For more information: www.sirmeeting.org

 

Related Content

DrChrono and 3D4Medical Partner to Bring 3-D Interactive Modeling to Physician Practices
News | Advanced Visualization | March 18, 2019
DrChrono Inc. and 3D4Medical have teamed up so practices across the United States can access 3-D interactive modeling...
Videos | Advanced Visualization | March 05, 2019
Augmented reality (AR) and virtual reality (VR) are starting to be adopted for physician training, patient education
Philips Introduces IntelliSpace Portal 11 at ECR 2019
Technology | Advanced Visualization | February 27, 2019
Philips announced the launch of IntelliSpace Portal 11, the latest release of the company’s comprehensive, advanced...
Philips and Microsoft have partnered to develop an augmented reality system to help imporve workflow and procedural navigation in the cath lab. Physicians wearing visors can view and interact with true 3-D holograms above the patient on the table and manipulate the image with voice and hand motion commands to avoid breaking the sterile field. Virtual reality in the cath lab, interventional lab, hybrid OR, or cardiovascular lab.

Philips and Microsoft have partnered to develop an augmented reality system to help imporve workflow and procedural navigation in the cath lab. Physicians wearing visors can view and interact with true 3-D holograms above the patient on the table and manipulate the image with voice and hand motion commands to avoid breaking the sterile field. 

News | Advanced Visualization | February 25, 2019
Philips will unveil a new mixed reality concept developed together with Microsoft that the company says is designed for...
Medivis Launches SurgicalAR Augmented Reality Platform
Technology | Advanced Visualization | February 14, 2019
Medical imaging and visualization company Medivis officially unveiled SurgicalAR, its augmented reality (AR) technology...
Videos | Advanced Visualization | December 12, 2018
This is an example of the FDA-cleared OpenSight augmented reality (AR) system for surgical planning from NovaRad at t
Nihon Kohden Launches Augmented Reality Electrophysiology Training App at HIMSS18
Technology | Advanced Visualization | March 06, 2018
Nihon Kohden announced the launch of the Nihon Kohden Dimensions Augmented Reality (AR) App to complement the Clinical...
NIH Issues $2.2 Million Grant for Augmented Reality Cardiac Hologram Research
News | Advanced Visualization | February 15, 2018
February 15, 2018 — The National Institutes of Health (NIH) awarded a $2.2 million research grant to healthcare techn
EchoPixel Showcases Next-Generation Surgical Planning With True 3-D Interactive Mixed Reality Software
News | Advanced Visualization | January 08, 2018
EchoPixel showcased the latest version of True 3D, its interactive, mixed reality software solution at the 103rd Annual...
Videos | Advanced Visualization | December 07, 2017
Dianna Bardo M.D., director of body MR and co-director of the 3-D Innovation Lab at Phoenix Children's Hospital, disc
Overlay Init