Technology | Clinical Decision Support | February 14, 2018

FDA Clears First AI-Powered Clinical Decision Support Software for Stroke

Viz.AI Contact application uses artificial intelligence algorithm to analyze CT images for stroke indicators; approval paves way for future computer-aided triage software devices

FDA Clears First AI-Powered Clinical Decision Support Software for Stroke

February 14, 2018 — The U.S. Food and Drug Administration (FDA) announced marketing clearance for Viz.AI’s Contact application, the first artificial intelligence (AI)-based clinical decision support (CDS) solution cleared for sale in the U.S. Viz.AI Contact is designed to analyze computed tomography (CT) results that may notify providers of a potential stroke in their patients.

A stroke occurs if the flow of oxygen-rich blood to a portion of the brain is blocked, also known as an occlusion. According to the Centers for Disease Control and Prevention, stroke is the fifth leading cause of death in the U.S. and is a major cause of serious disability for adults. About 795,000 people in the U.S. have a stroke each year.

“Strokes can cause serious and irreversible damage to patients. The software device could benefit patients by notifying a specialist earlier thereby decreasing the time to treatment. Faster treatment may lessen the extent or progression of a stroke,” said Robert Ochs, Ph.D., acting deputy director for radiological health, Office of In Vitro Diagnostics and Radiological Health in the FDA’s Center for Devices and Radiological Health.

The Viz.AI Contact application is a computer-aided triage software that uses an artificial intelligence algorithm to analyze images for indicators associated with a stroke. These types of algorithms can assist providers in identifying the most appropriate treatment plan for a patient’s disease or condition. The FDA is currently creating a regulatory framework for these products that encourages developers to create, adapt and expand the functionalities of their software to aid providers in diagnosing and treating diseases and conditions.

The Viz.AI Contact application is designed to analyze CT images of the brain and send a text notification to a neurovascular specialist if a suspected large vessel occlusion (LVO) has been identified. The algorithm will automatically notify the specialist during the same time the first-line provider is conducting a standard review of the images, potentially involving the specialist sooner than the usual standard of care in which patients wait for a radiologist to review CT images and notify a neurovascular specialist. The notification can be sent to a mobile device, such as a smartphone or tablet, but the specialist still needs to review the images on a clinical workstation.

The Viz.AI Contact application is intended to be used by neurovascular specialists, such as vascular neurologists, neuro-interventional specialists or other professionals with similar training. The application is limited to analysis of imaging data and should not be used as a replacement of a full patient evaluation or solely relied upon to make or confirm a diagnosis.

The company submitted a retrospective study of 300 CT images that assessed the independent performance of the image analysis algorithm and notification functionality of the Viz.AI Contact application against the performance of two trained neuro-radiologists for the detection of large vessel blockages in the brain. Real-world evidence was used with a clinical study to demonstrate that the application could notify a neurovascular specialist sooner in cases where a blockage was suspected. The Viz.ai LVO Stroke Platform obtained an AUC of 0.91, identifying LVOs and alerting the relevant specialist with 90 percent sensitivity and specificity, and a median scan to notification time of under 6 minutes. In over 95 percent of cases, the automatic notifications demonstrated faster notification of the specialist, saving between 6 and 206 minutes, with an average time saving of 52 minutes.

The Viz.AI Contact application was reviewed through the De Novo premarket review pathway, a regulatory pathway for some new types of medical devices that are low to moderate risk and have no legally marketed predicate device to base a determination of substantial equivalence. This action also creates a new regulatory classification, which means that subsequent computer-aided triage software devices with the same medical imaging intended use may go through the FDA’s premarket 510(k) notification process, whereby devices can obtain marketing authorization by demonstrating substantial equivalence to a predicate device.

For more information: www.viz.ai

Related Artificial Intelligence Content

Advances in Cardiac Imaging Technologies at RSNA 2017

Technology Report: Artificial Intelligence at RSNA 2017

VIDEO: Examples of How Artificial Intelligence Will Improve Medical Imaging

VIDEO: Deep Learning is Key Technology Trend at RSNA 2017

VIDEO: How Utilization of Artificial Intelligence Will Impact Radiology

Why AI By Any Name Is Sweet For Radiology

 

Related Content

A new technology for detecting low glucose levels via electrocardiogram (ECG) using a non-invasive wearable sensor, which with the latest artificial intelligence (AI) can detect hypoglycemic events from raw ECG signals has been made by researchers from the University of Warwick.

A new technology for detecting low glucose levels via electrocardiogram (ECG) using a non-invasive wearable sensor, which with the latest artificial intelligence (AI) can detect hypoglycemic events from raw ECG signals has been made by researchers from the University of Warwick.

 

News | Artificial Intelligence | January 13, 2020
A new technology for detecting low glucose levels via electrocardiogram (ECG) using a non-invasive wearable sensor,...
Videos | Artificial Intelligence | November 07, 2019
Piotr Slomka explains how his team at Cedars-Sinai is working on intelligent patient risk prediction algorithms...
AI Could Use EKG Data to Measure Patient's Overall Health Status

Image courtesy of iStock

News | Artificial Intelligence | August 29, 2019
In the near future, doctors may be able to apply artificial intelligence (AI) to electrocardiogram data in order to...
Half of Hospital Decision Makers Plan to Invest in AI by 2021
News | Artificial Intelligence | August 08, 2019
A recent study conducted by Olive AI explores how hospital leaders are responding to the imperative to drive efficiency...
Artificial Intelligence Solution Improves Clinical Trial Recruitment

A nurse examines a patient in the Emergency Department of Cincinnati Children’s, where researchers successfully tested artificial intelligence-based technology to improve patient recruitment for clinical trials. Researchers report test results in the journal JMIR Medical Informatics. Image courtesy of Cincinnati Children’s.

News | Artificial Intelligence | July 31, 2019
Clinical trials are a critical tool for getting new treatments to people who need them, but research shows that...

An example of AI-assisted automation developed by TomTec, where a deep learning algorithm automatically marks the myocardial borders and performs auto quantification This removes time consuming tasks to free up the operator to spend more time with patients and helps make exams more reproducible.

Feature | Artificial Intelligence | July 26, 2019
Intelligent software solutions (aka...
vRad Presents AI Model to Assess Probability of Aortic Dissection
News | Artificial Intelligence | July 01, 2019
vRad (Virtual Radiologic), a Mednax company recently made a scientific presentation, “Screening for Aortic Dissection...
Videos | Artificial Intelligence | June 28, 2019
This is a quick example of how artificial intelligence (AI) is being integrated on the back end of cardiac ultrasound
Overlay Init