News | Heart Valve Technology | May 14, 2018

3-D Printed Models to Guide TAVR Improve Outcomes

Results presented at SCAI 2018 show novel technology could reduce risks paravalvular leaks

The use of 3-D printed hearts from patients' pre-TAVR planning CT scans have improved outcomes of procedures at the University of Minnesota. Clearly identifying where calcium is located on the valves prior to TAVR device implantation has helped reduce the incidence of paravalvular leak.  #SCAI, #SCAI2018

The use of 3-D printed hearts from patients' pre-TAVR planning CT scans have improved outcomes of procedures at the University of Minnesota. Clearly identifying where calcium is located on the valves prior to TAVR device implantation has helped reduce the incidence of paravalvular leak.

May 14, 2018 – A new study examines the effectiveness of 3-D printing technology and computer modeling to predict paravalvular leak (PVL) in patients undergoing transcatheter aortic valve replacement (TAVR). A common risk of TAVR is an ill-fitting valve which can lead to PVL. To address this risk, the study used 3-D printing technology to help confirm and detect the location of the leak. The retrospective study was presented today at the Society for Cardiovascular Angiography and Interventions (SCAI) Scientific Sessions.

More than 5 million Americans are diagnosed with heart valve disease each year.[1] TAVR is a procedure used for intermediate, high-risk, and inoperable patients with severe narrowing of the aortic valve where a prosthetic valve is implanted and the damaged valve is replaced. Patients who undergo TAVR, which is a less invasive procedure to replace the heart’s aortic valve, can experience paravalvular leak around the new valve which can lead to higher mortality rates. Therefore, clinicians are exploring ways to find and prevent these leaks from happening. 3D printing has become more popular within the medical space as it has been discovered to be a vital tool to prevent, fix and foresee procedural errors.

In the study, six patients undergoing TAVR for severe, calcific aortic stenosis and at risk for paravalvular leak had pre-procedure computed tomography (CT) images analyzed and segmented for printing of 3D models. The CT scans allowed researchers to see a 360-degree view of the location of the calcium build up while the 3D models allowed researchers to further evaluate the ill-fitting valves. The 3D aortic root models were then implanted with the valve to determine if the size was correct, ultimately revealing where the calcium composites would be. The 3D models were scanned, evaluated for final analysis and then compared to in-vivo implanted TAVR echocardiograms.

Every leak seen on the 3D models were confirmed on the CT digital scans. The 3D models allowed researchers to use prototypes to personalize valve placement, size and location to stop leaks and lower calcium build up.

“We are very encouraged to see such positive outcomes for the feasibility of 3D printing in patients with heart valve disease. These patients are at a high risk of developing a leak after TAVR, and anything we can do to identify and prevent these leaks from happening is certainly helpful,” said lead author Sergey Gurevich, M.D., and cardiovascular fellow at the University of Minnesota in Minneapolis, Minn. “Like any other new technology, as 3D printing evolves, we hope to see an increase in accessibility and opportunity for the use of this technology to help improve patient care.”

The authors call for a functional study to help determine the exact size of the leak. The authors of this study are working with computational fluid dynamics to optimize calculations.

Watch the VIDEO "Applications in Cardiology for 3-D Printing and Computer Aided Design" — interview with Dee Dee Wang, M.D., Director, Structural Heart Imaging at Henry Ford Hospital, Detroit.
 

Complete listing of SCAI 2018 late-breaking trials with links to articles.

Reference: 

1. American Heart Association. Under-recognized heart valve disease kills estimated 25,000 each year. https://news.heart.org/under-recognized-heart-valve-disease-kills-estimated-25000-each-year/. Accessed April 20, 2018.

Related Content

Mobility May Predict Elderly Heart Attack Survivors' Repeat Hospital Stays
News | Cath Lab | April 23, 2019
Determining which elderly heart attack patients take longer to stand from a seated position and walk across a room may...
FDA Releases New Guidance on Medical Devices Containing Nitinol
News | Cath Lab | April 18, 2019
April 18, 2019 — The U.S.
Angiography shows a stenotic lesion in the mid right coronary artery, undilatable by standard high-pressure balloon angioplasty (inset, arrowheads). (B) Optical coherence tomography (OCT) cross-sectional (top) and longitudinal (bottom) images acquired before IVL and coregistered to the OCT lens (arrow in A) demonstrate severe near-circumferential calcification in the area of the stenosis. (C) Angiography demonstrates improvement in the area of stenosis after IVL lithoplasty.

Figure 2: Angiography demonstrates a stenotic lesion in the mid right coronary artery, undilatable by standard high-pressure balloon angioplasty (inset, arrowheads). (B) Optical coherence tomography (OCT) cross-sectional (top) and longitudinal (bottom) images acquired before IVL and coregistered to the OCT lens (arrow in A) demonstrate severe near-circumferential calcification (double-headed arrow) in the area of the stenosis. (C) Angiography demonstrates improvement in the area of stenosis after IVL (inset; note the cavitation bubbles generated by IVL [black arrows]). (D) OCT cross-sectional (top) and longitudinal (bottom) images acquired post-IVL and coregistered to the OCT lens (white arrow in C) demonstrate multiple calcium fractures and large acute luminal gain. (E) Angiography demonstrates complete stent expansion with the semicompliant stent balloon (inset) without the need for high-pressure noncompliant balloon inflation. (F) OCT cross-sectional (top) and longitudinal (bottom) images acquired post-stenting and coregistered to the OCT lens (arrow in E) demonstrate further fracture displacement (arrow), with additional increase in the acute area gain (5.17 mm2), resulting in full stent expansion and minimal malapposition.

Feature | Cath Lab | April 15, 2019 | Dean Kereiakes, M.D., FACC, FSCAI, and Jonathan Hill, M.D., DISRUPT CAD III Co-Principal Investigators
Over the last 40 years, despite multiple advancements in percutaneous coronary interventions, calcified lesions remai
BIOTRONIK’s PK Papyrus covered coronary stent. The stent ius used in emergency coronary artery dissections to repair the vessel wall.
Technology | Cath Lab | April 15, 2019
April 15, 2019 — Biotronik began its U.S.
Providing Follow-Up Care After Heart Attack Helps Reduce Readmissions, Deaths
News | Cath Lab | April 09, 2019
A program designed to help heart attack patients with the transition from hospital to outpatient care can reduce...
TherOx Receives FDA Approval for SuperSaturated Oxygen Therapy
Technology | Cath Lab | April 08, 2019
TherOx Inc. announced that the U.S. Food and Drug Administration (FDA) granted premarket approval for its...
Cook Medical Recalls Transseptal Needle Due to Risk of Detached Plastic Fragments
News | Cath Lab | March 20, 2019
March 20, 2019 — Cook Medical is recalling one lot of its...
DABRA Excimer Laser System Demonstrates Success in Treating PAD
News | Cath Lab | February 27, 2019
Ra Medical Systems Inc. announced a 98 percent success rate in the results from a 52-patient study using the company’s...
Edwards Lifesciences Recalls Swan-Ganz hemodynamic catheters.
Feature | Cath Lab | February 06, 2019
Edwards Lifesciences is recalling its 131F7, 131F7J, 131F7P, 131VF7P, 151F7 Swan-Ganz Thermodilution Catheters manufa
Scientists Discover New Heart Attack Repair Pathway

A macrophage immune cell, with a dead cell (pink) that has been eaten, and a mitochondrion (green) between the dead cell and the nucleus. The study’s findings indicate that what the macrophage eats is taken up by the mitochondrion, which in turn communicates with the nucleus to activate the macrophage to promote tissue repair. Image courtesy of Northwestern Medicine.

News | Cath Lab | January 30, 2019
Northwestern Medicine scientists have discovered a novel signaling pathway that promotes healing after a heart attack....
Overlay Init