News | Coronavirus (COVID-19) | March 20, 2024

Severe Lung Infection During COVID-19 Can Cause Damage to the Heart

NIH supported study shows that the virus that causes COVID-19 can damage the heart without directly infecting heart tissue.

NIH supported study shows that the virus that causes COVID-19 can damage the heart without directly infecting heart tissue.

Getty Images


March 20, 2024 — SARS-CoV-2, the virus that causes COVID-19, can damage the heart even without directly infecting the heart tissue, a National Institutes of Health-supported study has found. The research, published in the journal Circulation, specifically looked at damage to the hearts of people with SARS-CoV2-associated acute respiratory distress syndrome (ARDS), a serious lung condition that can be fatal. But researchers said the findings could have relevance to organs beyond the heart and also to viruses other than SARS-CoV-2.

Scientists have long known that COVID-19 increases the risk of heart attack, stroke, and Long COVID, and prior imaging research has shown that over 50% of people who get COVID-19 experience some inflammation or damage to the heart. What scientists did not know is whether the damage occurs because the virus infects the heart tissue itself, or because of systemic inflammation triggered by the body’s well-known immune response to the virus.

“This was a critical question and finding the answer opens up a whole new understanding of the link between this serious lung injury and the kind of inflammation that can lead to cardiovascular complications,” said Michelle Olive, Ph.D., associate director of the Basic and Early Translational Research Program at the National Heart, Lung, and Blood Institute (NHLBI), part of NIH. “The research also suggests that suppressing the inflammation through treatments might help minimize these complications.”

Watch the related VIDEO: How to Image COVID-19 and Radiological Presentations of the Virus — Interview with Margarita Revzin, M.D.

To reach their findings, the researchers focused on immune cells known as cardiac macrophages, which normally perform a critical role in keeping the tissue healthy but can turn inflammatory in response to injury such as heart attack or heart failure. The researchers analyzed heart tissue specimens from 21 patients who died from SARS-CoV-2-associated ARDS and compared them with specimens from 33 patients who died from non-COVID-19 causes. They also infected mice with SARS-CoV-2 to follow what happened to the macrophages after infection.

In both humans and mice, they found the SARS-CoV-2 infection increased the total number of cardiac macrophages and also caused them to shift from their normal routine and become inflammatory.

When macrophages are no longer doing their normal jobs, which includes sustaining the metabolism of the heart and clearing out harmful bacteria or other foreign agents, they weaken the heart and the rest of the body, said Matthias Nahrendorf, M.D., Ph.D., professor of Radiology at Harvard Medical School and senior author on the study.

The researchers then designed a study in mice to test whether the response they observed happened because SARS-CoV-2 was infecting the heart directly, or because the SARS-CoV-2 infection in the lungs was severe enough to render the heart macrophages more inflammatory. This study mimicked the lung inflammation signals, but without the presence of the actual virus. The result: even in the absence of a virus, the mice showed immune responses strong enough to produce the same heart macrophage shift the researchers observed both in the patients who died of COVID-19 and the mice infected with SARS-CoV-2 infection.

“What this study shows is that after a COVID infection, the immune system can inflict remote damage on other organs by triggering serious inflammation throughout the body – and this is in addition to damage the virus itself has directly inflicted on the lung tissue,” said Nahrendorf. “These findings can also be applied more generally, as our results suggest that any severe infection can send shockwaves through the whole body.”

The research team also found that blocking the immune response with a neutralizing antibody in the mice stopped the flow of inflammatory cardiac macrophages and preserved cardiac function. While they have yet to test this in humans, Nahrendorf said a treatment like this could be used as a preventive measure to help COVID-19 patients with pre-existing conditions, or people who are likely to have more severe outcomes from SARS-CoV-2 associated ARDS.

For more information: www.nih.gov

 

Related COVID Content:

Special Storage and Adverse Reactions for First COVID-19 Vaccine Approved by the FDA

Lung Ultrasounds Could Help Determine COVID-19 Outcome

Johns Hopkins Medicine Expert Weighs Devastating Impact of COVID-19 on Healthcare Workers

CT in a Box Helps Rapidly Boost Imaging Capability at COVID Surge Hospitals

Philips Patient Management Solution keeps patients safe and personalizes care during COVID-19 at leading U.S. medical centers

CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia

Infervision in the Frontlines Against the Coronavirus

CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV)

The Cardiac Implications of Coronavirus

VIDEO: COVID-19 Pneumonia Chest CT Scan Scroll Through

CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia

Chest CT Can Distinguish Negative From Positive Lab Results for COVID-19

VIDEO: CT Sees Increased Use During COVID-19

Radiologists Urge Use of Medical Imaging and AI-Powered Solutions to Manage COVID-19

Stroke Scans Could Reveal COVID-19 Infection

Handheld Ultrasound Used to Monitor COVID-19 Patients With Cardiac Complications

Study Looks at CT Findings of COVID-19 Through Recovery

Using Lung X-rays to Diagnose COVID-19

How COVID-19 Affects the Brain in Neuroimaging
 

VIDEO: Lingering Myocardial Involvement After COVID-19 Infection — Interview with Aaron Baggish, M.D.

COVID-19 Can Impact Hearts in Young Children

VIDEO: What Are The Long-term Cardiac Impacts of COVID-19 Infection — Interview with Todd Hurst, M.D.

Find more related clinical content Coronavirus (COVID-19)


Related Content

News | Coronavirus (COVID-19)

January 25, 2024 — New research confirms what public health leaders have been fearing: the significant uptick in the ...

Home January 25, 2024
Home
News | Coronavirus (COVID-19)

January 11, 2024 — Acute cardiovascular manifestations of COVID-19, such as heart failure, thrombosis, and dysrhythmia ...

Home January 11, 2024
Home
News | Coronavirus (COVID-19)

December 14, 2023 — Individuals infected with COVID-19 are also at an increased risk of suffering from heart rhythm ...

Home December 14, 2023
Home
News | Coronavirus (COVID-19)

October 16, 2023 — A door-to-balloon (D2B) time of 90-minutes or less is associated with improved outcomes for heart ...

Home October 16, 2023
Home
News | Coronavirus (COVID-19)

October 11, 2023 — Unvaccinated people who have recovered from COVID-19 are at heightened risk of heart complications ...

Home October 11, 2023
Home
News | Coronavirus (COVID-19)

September 26, 2023 — New research from the Smidt Heart Institute at Cedars-Sinai shows that patients who went to a ...

Home September 26, 2023
Home
News | Coronavirus (COVID-19)

June 19, 2023 — Patients who had heart attacks during the first COVID-19 lockdown in the UK and Spain are predicted to ...

Home June 19, 2023
Home
News | Coronavirus (COVID-19)

June 14, 2023 — A University of Waterloo engineer’s MRI invention reveals better than many existing imaging technologies ...

Home June 14, 2023
Home
News | Coronavirus (COVID-19)

June 9, 2023 — Patients infected with beta and delta COVID-19 variants, and those who required hospital stays for COVID ...

Home June 09, 2023
Home
News | Coronavirus (COVID-19)

May 31, 2023 — Cytomegalovirus (CMV) is one of the most prevalent herpesviruses worldwide. Depending on the geographical ...

Home May 31, 2023
Home
Subscribe Now