News | Heart Valve Technology | December 26, 2019

Tissue Engineering Will Disrupt Cardiovascular Implant Market

Healthcare market research firm GlobalData says developing valves or tissues that can grow with younger patients will be next big advance in cardiovascular surgery

The Wyss Translational Center in Zurich, Switzerland has developed the LifeMatrix platform to engineer tissues that can be implanted in patients and will grow with them. This technology is being developed for heart valves in younger patients to eliminate the need for repeat surgeries to implant larger prosthetic heart valves as the patient grows.

The Wyss Translational Center in Zurich, Switzerland has developed the LifeMatrix platform to engineer tissues that can be implanted in patients and will grow with them. This technology is being developed for heart valves in younger patients to eliminate the need for repeat surgeries to implant larger prosthetic heart valves as the patient grows.

 

While transcatheter heart valve replacement and repair devices are growing in popularity due to their delivery and quicker recovery times, they still face a number of limitations. In particular, all current commercially available transcatheter heart valve devices are composed of inert material that does not grow with the patient, which is especially problematic for younger patients who then often require repeated replacement interventions or surgeries throughout their lives, said GlobalData, a healthcare data and analytics company.

To address the issues with current cardiovascular implant technology, a new start-up company operating as part of the Wyss Translational Center in Zurich, Switzerland has developed the LifeMatrix platform, a scalable tissue engineering technology that creates novel biomimetic cardiovascular implants with capacity for self-renewal, remodeling and growth.

The tissue engineering-based LifeMatrix platform shows huge potential to be a disruptive technology in the cardiovascular implant market. GlobalData estimates that the transcatheter aortic valve replacement (TAVR) market alone represents a global market value of $3.41 billion in 2019, and projects a double-digit compound annual growth rate (CAGR) of this market value across the globe.

“If LifeMatrix is able to demonstrate clinical advantages of its platform through rigorous human clinical trial testing, the advantages of this technology will establish it as a competitive player in the TAVR and other cardiovascular markets in the future," said Ashley Young, medical devices analyst at GlobalData. “In essence, the LifeMatrix platform involves growing donor human cells from so-called ‘master cell banks’ onto biodegradabe polymer scaffolds outside of the body with specific stimulants so that they produce extracellular matrix (ECM). The human donor cells are then removed, leaving behind an off-the-shelf and cell-free implant, which can be implanted into every patient without eliciting an immune response."

Young said LifeMatrix biomimentic implants are dynamic, having the capacity to grow and transform into living tissue after implantation and repopulation with the recipient’s cells. In addition, the LifeMatrix process is scalable, since the same donor cells can be used to create thousands of individual biomimetic implants.

So far, LifeMatrix devices have undergone several stages of preclinical testing and successfully shown feasibility, safety and efficacy for a number of different indications.

“The first indication targeted for clinical trials in humans using these biomimetic devices was as a cavopulmonary shunt in pediatric patients with single ventricle anatomy," Young  explained. "Animal testing using LifeMatrix devices as heart valve replacements has also proven to be successful. First proof-of-concept studies have furthermore confirmed the feasibility of LifeMatrix technology for TAVR. Going forward, the company plans on considering additional cardiovascular indications.”

For more information:www.globaldata.com/media

 

Related Content

Closing access to the radial artery after harvesting a section of the artery for a coronary artery bypass graft (CABG). Photo by Getty Images. #ACC20 #ACC2020

Closing access to the radial artery after harvesting a section of the artery for a coronary artery bypass graft (CABG). Photo by Getty Images.

News | Cardiovascular Surgery | March 30, 2020
March 30, 2020 — Patients undergoing coronary bypass graft (CAGB) surgery lived longer and had better outcomes when s
The LivaNova Heater-Cooler System 3T helps open heart surgery patients, but can pose an infection risk if not properly cared for.

The LivaNova Heater-Cooler System 3T helps open heart surgery patients, but can pose an infection risk if not properly cared for.

News | Cardiovascular Surgery | February 27, 2020
February 27, 2020 — The U.S.
Michigan Hospital Improves Post-CABG Outcomes Using Proactive Amiodarone Protocol
News | Cardiovascular Surgery | October 23, 2019
Proactive administration of amiodarone to patients recovering from a common heart surgery shows promise in preventing...
Gore Block Grant Supports SVS Quality Programs
News | Cardiovascular Surgery | October 17, 2019
W. L. Gore & Associates Inc. will support a new Society for Vascular Surgery (SVS) initiative to advance patient...
Heart and Lung Surgery Patients May Be at High Risk for Opioid Dependence

Image courtesy of the American Heart Association

News | Cardiovascular Surgery | August 22, 2019
The amount of opioids prescribed for patients after heart and lung surgery has a direct relationship with the risk for...
Keck School of Medicine Promotes Patient Diversity in Cardiac Surgery Clinical Trials
News | Cardiovascular Surgery | July 26, 2019
A highly competitive $4.5 million grant from the National Institutes of Health (NIH) National Heart, Lung and Blood...
Google Doodle Celebrates Coronary Artery Bypass Graft Pioneer René Favaloro
News | Cardiovascular Surgery | July 12, 2019 | Jeff Zagoudis, Associate Editor
Internet search engine giant Google unveiled a new Doodle on its homepage Friday, July 12, celebrating the life and...
Open Heart Surgery Outperforms Stents in Patients With Multivessel Disease
News | Cardiovascular Surgery | May 03, 2019
Coronary artery bypass grafting (CABG) surgery may be the best treatment option for most patients with more than one...
SherpaPak Cardiac Transport System Cleared for Pediatric and Small Donor Hearts
Technology | Cardiovascular Surgery | February 01, 2019
Paragonix Technologies Inc. recently received clearance from the U.S. Food and Drug Administration (FDA) for a design...
Transplanting Pig Hearts Into Humans One Step Closer. A pig heart, shown here, is very similar in size and anatomy to a human heart. For this reason, pigs are used extensively in pre-clinical animal testing for new implantable cardiovascular devices. If pig hearts could be used for human transplantation, it would greatly alleviate shortages of donor human hearts.

A pig heart, shown here, is very similar in size and anatomy to a human heart. For this reason, pigs are used extensively in pre-clinical animal testing for new implantable cardiovascular devices. If pig hearts could be used for human transplantation, it would greatly alleviate shortages of donor human hearts.

News | Cardiovascular Surgery | December 11, 2018
The scientific journal Nature recently published an article from Munich University Hospital which describes the long-...