Feature | May 19, 2009

Comparing Cardiac Ultrasound Scanners

This comparison chart covers dedicated cardiac ultrasound scanners specifically intended for performing cardiac or vascular imaging studies. General purpose systems with extensive cardiac scanning options are also included.

Cardiac ultrasound scanners are ultrasound scanning and image processing systems designed specifically for real-time, noninvasive imaging of heart structures. They are used to detect such conditions as mitral and aortic stenosis and insufficiency to determine the extent of damage from suspected myocardial infarction and to diagnose congenital cardiac defects — such as patent ductus arteriosus and transposition of the great arteries. Cardiac ultrasound can also be used instead of cardiac catheterization to monitor ventricular function. Transesophageal echocardiography (TEE) is most commonly used in surgery for detecting myocardial ischemia and monitoring cardiac output. This intraoperative use of TEE allows analysis of regional cardiac wall motion, in which abnormalities have been shown to develop within 15 seconds of coronary occlusion.

Vascular ultrasonic scanning gives the physician profiles of arteries and veins throughout the body. It is used to diagnose atherosclerotic obstructions, occlusions, disease and incompetence by means of a 2D, real-time image of the organ or vessel, as well as a profile of blood-flow velocity through the area being examined. In many cases, vascular ultrasonic scanning systems prevent the need for contrast arteriography, which requires vessel cannulation, contrast media injection and ionizing radiation exposure. Vascular ultrasound imaging is the primary screening method for deep vein thrombosis (DVT). Many ultrasonic scanning systems that are marketed primarily for cardiac and vascular applications can be used for other applications; however, additional transducers or software may be needed.

Various probes of different ultrasonic frequencies are available. For diagnostic imaging, frequencies from 2 to 30 MHz are typically used, while frequencies of 5 to 15 MHz are considered optimal for vascular scanning. Probes that generate higher frequencies produce shorter wavelengths and narrower beams, which improve resolution; however, higher-frequency sound energy is more readily absorbed by tissue and the usable depth of penetration is decreased. Many systems now have broadband probes, which have larger frequency ranges than traditional probes and offer combinations of deeper penetration and higher resolution.

Various modes are available for displaying the returning echoes. B-mode (brightness-modulated mode) is the scanning system’s basic imaging mode. B-mode produces a real-time, 2D image that represents a cross-sectional slice of the area under study. M-mode (motion-mode) uses a fixed position pulsed beam to produce a moving display of a single scan line over an interval of time. Used almost exclusively in cardiac studies, M-mode produces a graphic display of a moving structure (e.g., the cardiac valve over several heart beats.) Simultaneous display of M- and B-modes is particularly useful when examining dynamic structures such as the heart.

Cardiac ultrasound scanners use Doppler to determine the direction and speed of blood flow. Most scanners include spectral Doppler, either continuous wave (CW) or pulsed wave (PW). Spectral Doppler includes a spectrum analyzer to display frequency shifts plotted against time with grayscale intensity varying with the received signals’ strength or amplitude. Color Doppler imaging of myocardial tissue to show motion and assess myocardial viability is being researched for applications in stress echocardiography evaluations of heart abnormalities (e.g., Wolff-Parkinson-White-Syndrome) and reperfusion therapy.

Some manufacturers offer 3D ultrasound, which involves volume-per-second acquisition and display for volume measurements, improved imaging presentation and volume-of-interest studies. The 3D images can be produced by direct online 3D acquisition with a transducer scanning a volume instead of a slice of the tissue. An advantage of 3D ultrasound is that it can simulate intraoperative visualization.

Expanding vascular applications include guided sclerotherapy; assessment of pelvic venous congestion, sapheous insufficiency, saphenofemoral reflux and perforator disease and imaging of the lower-extremity DVT.


Related Content

News | Cardiovascular Ultrasound

Septe. 30, 2025 -- GE HealthCare Vivid iq Ultrasound system has been selected by NASA for delivery to the International ...

Home October 09, 2025
Home
News | Cardiovascular Ultrasound

Sept. 26, 2025 — A new guideline from the American Society of Echocardiography (ASE) offers updated and expanded ...

Home October 03, 2025
Home
News | Cardiovascular Ultrasound

Aug. 27, 2025 — Royal Philips has released Transcend Plus, the next generation of its EPIQ CVx and Affiniti CVx ...

Home August 27, 2025
Home
News | Cardiovascular Ultrasound

Aug. 14, 2025 — Philips has announced a plan for new investments of more than $150 million in U.S. manufacturing and ...

Home August 14, 2025
Home
News | Cardiovascular Ultrasound

March 24, 2025 — FUJIFILM Healthcare Americas Corp. and Us2.ai have partnered to equip Fujifilm’s LISENDO 800 ...

Home March 24, 2025
Home
News | Cardiovascular Ultrasound

Feb. 11, 2025 — UltraSight, a company committed to enhancing the efficiency and productivity of cardiac ultrasound ...

Home February 18, 2025
Home
News | Cardiovascular Ultrasound

May 30, 2024 — A recent study published in the European Heart Journal highlights the significant enhancements that the ...

Home May 30, 2024
Home
News | Cardiovascular Ultrasound

April 5, 2024 — Cardiawave SA, a French medtech company that has developed an innovative Non-Invasive focused Ultrasound ...

Home April 05, 2024
Home
News | Cardiovascular Ultrasound

August 24, 2023 —Royal Philips, a global leader in health technology, highlighted how it integrates AI in cardiac ...

Home August 24, 2023
Home
News | Cardiovascular Ultrasound

July 27, 2023 —UltraSight, a digital health pioneer transforming cardiac imaging through the power of artificial ...

Home July 27, 2023
Home
Subscribe Now