Feature | Heart Valve Technology | November 07, 2017

Harpoon Device May Improve Quality, Frequency of Mitral Repair

Harpoon Mitral Valve Repair System data reported at TCT 2017
Harpoon Mitral Valve Repair System data reported at TCT 2017
Harpoon Mitral Valve Repair System data reported at TCT 2017

November 7, 2017 – A new study has found that a pioneering device to repair heart valves is safe and effective, and can reduce the invasiveness and side effects of conventional mitral valve surgery. The Harpoon Mitral Valve Repair System (H-MVRS), an image-guided device based on technology developed at the University of Maryland School of Medicine (UMSOM), is deployed through a small opening between the ribs, and repairs the heart while it continues to beat. The TRACER study six-month outcomes research was presented at the 2017 Transcatheter Cardiovascular Therapeutics (TCT) symposium in Denver, and simultaneously published in Journal of the American College of Cardiology (JACC).

“The Harpoon device was found to be remarkably safe and effective,” said the study’s principal investigator and an inventor of the device, James S. Gammie, M.D., professor of surgery at UMSOM and chief of cardiac surgery at the University of Maryland Medical Center. “The device allowed the surgeons to precisely and effectively reduce the degree of mitral regurgitation (MR) without using an open-heart procedure. There were no deaths. Only one patient needed a blood transfusion, and there were no strokes, no need for pacemakers, no readmission to the ICU, and no reintubations.” 

Thirty patients with a condition called mitral valve regurgitation (MR) were treated with the device at six clinical centers in Europe, sponsored by the manufacturer of the device, Harpoon Medical Inc., to determine whether the device meets essential European health and safety requirements.

Three patients required conversion to conventional open-heart mitral surgery, including two cases where poor imaging prevented accurate placement of the tool, while 27 met the primary endpoint. At six months, MR was mild or less in 85 percent (22/26) of patients successfully treated with H-MVRS. The repair was associated with restoration of normal valve function and improvement in the heart’s ability to pump blood, according to the researchers, and the operative times for procedures using the device were approximately half those reported for conventional mitral valve repair.

 

Harpoon Device Details

The H-MVRS is an investigational device. It does not have European CE marking and the U.S. Food and Drug Administration (FDA) has not approved it for use in patients in the United States.

The H-MVRS is designed to treat degenerative MR, the most common type of heart valve disorder. In MR, a leaky valve lets blood travel in the wrong direction on the left side of the heart, causing shortness of breath, fluid retention, irregular heartbeats and fatigue. MR develops when the small fibrous cords that open and close the valve’s flaps, known as leaflets, are broken or stretched, preventing them from closing tightly and causing the leaflets to bulge or prolapse upward toward the left atrium. The natural cords connect the valve flaps to muscles inside the heart that contract to close the mitral valve, which gets its name because its two flaps resemble a bishop’s mitre.

The device anchors artificial cords on the flaps to take the place of the natural cords. The artificial cords are made of expanded polytetrafluoroethylene (ePTFE), a polymer commonly used as sutures in cardiac surgery.

Surgeons insert the device into the beating heart through a tiny opening in the ribcage and, using echocardiographic imaging, guide it to the surface of the defective mitral flaps. When the surgeon determines the optimal placement for an artificial cord, the device is actuated and a specially designed needle makes a tiny hole and sends the cord material through the flap. The needle is then withdrawn and the cord of ePTFE is tightened to form a double-helical knot to hold it in place. The sequence is repeated for the desired number of knots (usually four to six). The other end of the cord is adjusted for optimum length and tied to the outside layer of the heart, the epicardium.

“Over the past five years, our faculty has increasingly engaged in entrepreneurial and technology transfer activity – with significant increases in the number of U.S. and foreign patents issued, technology inventions licensed and start-up companies formed,” said UMSOM Dean E. Albert Reece, M.D., Ph.D., MBA, vice president for medical affairs at the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor. “This invention by Dr. Gammie is an excellent example of how new devices and therapies developed here have tremendous potential for treating patients and ultimately saving lives.” 

The device was previously tested in Poland. U.S. testing of the device may begin in 2018.

The study was funded by Harpoon Medical. Gammie and three others on the research team report ownership of stock and/or options to purchase stock in Harpoon Medical. At the present time, the US Food and Drug Administration has not approved the H-MVRS for patients in the United States.

For more information: medschool.umaryland.edu/

 

Related Content

TCT 2017 Late-breaking Clinical Trial Presentations

Reference:

1. A, Kusmierczyk M, Kapelak B, Rzucidlo-Resil J, Moat N, Duncan A, Yadev R, Livesey S, Diprose P, Gerosa G, D’Onofrio A, Pitterello D, Denti P, La Canna G, De Bonis M, Alfieri O, Hung J, Kolsut P. “Beating-Heart Mitral Valve Repair Using a Novel ePTFE Cordal Implantation Device: Prospective Trial.” Journal of the American College of Cardiology (2017), doi: 10.1016/j.jacc.2017.10.062.

 

Related Content

CorInnova Awarded 2017 InnoSTARS Prize for EpicHeart Soft Robotic Heart Assist Device
News | Artificial Heart| December 11, 2017
CorInnova Inc. recently announced it was awarded second prize in the “2017 InnoSTARS” life science competition for its...
Edwards Acquires Harpoon Medical
News | Heart Valve Technology| December 07, 2017
December 7, 2017 — Edwards Lifesciences Corp.
Robocath Receives $1.5 Million in Capital for Advancement of R-One Robotic System
News | Robotic Systems| December 06, 2017
December 6, 2017 — French company Robocath, which designs and develops...
New data on the Corvia intra-atrial shunt to treat diastolic heart failure were presented at the recent 2017 American Heart Association (AHA) Scientific Sessions. It was the most popular story in November.

New data on the Corvia intra-atrial shunt to treat diastolic heart failure were presented at the recent 2017 American Heart Association (AHA) Scientific Sessions. It was the most popular story in November.

Feature | December 06, 2017 | Dave Fornell
Here is the list of the most popular articles and videos on the Diagnostic and Interventional Cardiology (DAIC) magaz
New Tool Predicts Risk of Heart Attack in Older Surgery Patients
News | Cardiac Diagnostics| December 05, 2017
A tool designed to more accurately predict the risk of heart attack in older patients undergoing non-cardiac surgery...
Toshiba Medical Rolls Out Interactive Learning Tools for Ultrasound and Vascular Training
News | Ultrasound Imaging| December 04, 2017
Toshiba Medical, a Canon Group company, introduced new educational tools and interactive learning resources to help...
Philips Azurion Platform Improves Clinical Workflow and Staff Experience Benefits
News | Angiography| December 04, 2017
Philips recently announced the results of a comprehensive, independent, two-year study demonstrating the clinical...
Studies find 15 percent of all heart attack and stroke patients and 9 percent of CABG patients were uninsured before passage of the Affordable Care Act. AHA 2017, #aha2017
News | November 25, 2017
November 25, 2017 — The majority of patients without health insurance who were hospitalized for heart attack, stroke
The Corvia intra-atrial shunt to treat diastolic heart failure.

The Corvia intra-atrial shunt to treat diastolic heart failure.

Feature | Heart Failure| November 25, 2017
November 25, 2017 – Results presented at the 2017 American Heart Association (AHA) Scientific Sessions and published
The California Heart & Vascular Clinic in El Centro, Calif., treated the first post-FDA clearance patient with a DABRA atherectomy system. Athar Ansari, M.D.

The California Heart & Vascular Clinic in El Centro, Calif., treated the first post-FDA clearance patient with a DABRA atherectomy system. 

Feature | Cath Lab| November 24, 2017 | Athar Ansari, M.D., FACC
As debates about the current state and future of healthcare rage in Congress, the media and healthcare settings acros
Overlay Init