Feature | Radiation Dose Management | June 13, 2017| Dominic Siewko

Regulatory Requirements: The Impact on Cardiac Imaging and Dose Management

Philips Dosewise portal allows X-ray radiation dose tracking for individual patients

An example of radiation dose tracking software is Philips Dosewise portal, which allows X-ray radiation dose tracking for individual patients by modality, body region and exam type.

Philips Dosewise portal allows X-ray radiation dose tracking for individual patients
Philips Dosewise portal allows X-ray radiation dose tracking for individual patients

In recent years, radiation dose management awareness has heightened across the healthcare industry to address growing concerns around the consequences of too much exposure, and a lack of standardization around dose management protocols and practices. Industry stakeholders have responded by introducing new regulations and requirements for healthcare providers, including the Centers for Medicare and Medicaid Services’ (CMS) recent Medicare Access and Chip Reauthorization Act (MACRA) ruling,[1] along with updated Joint Commission standards,[2] which call for more stringent dose management and reimbursement requirements. Understanding exactly what prompted these changes is paramount for health systems around the world to ensure compliance and success in this evolving environment.

While radiation dose monitoring and tracking is part and parcel of a hospital’s radiation dose management and safety program, one big obstacle many providers face is implementing the behavioral and operational changes required to replace current habits with new and improved best practices. Without understanding the big picture risk of too much radiation exposure, a radiologist deciding whether or not to conduct an imaging procedure involving radiation may opt in favor of a non-X-ray procedure such as ultrasound.  

The practice of “justifying” the correct imaging procedure for the patient is taking center stage, meaning more emphasis should be placed on choosing an appropriate imaging procedure to achieve the desired clinical result, taking radiation exposure to the patient into account. This will not only prevent exposing that patient to unneeded radiation, but also contribute to solving a larger public health issue.

In recent years, there has been a dramatic increase in the volume of imaging exams — for example, the volume of nuclear SPECT myocardial perfusion imaging alone increased threefold over the course of a decade.[3] Coupled with the intense magnitude of cardiac imaging radiation doses, where one exam can equal between 250-1,250 chest X-rays,[4] or up to a lifetime of screening mammograms, medical radiation exposure is en route to becoming a public health problem. 

In fact, the National Council on Radiation Protection and Measurements conducted two studies, 25 years apart, as a comprehensive review of radiation exposure to the American population from all sources over the past 30 years. Between 1980 and 2006, non-medical radiation exposure remained steady, however medical radiation exposure increased six-fold,[3] with cardiac imaging accounting for about 17 percent of all ionizing radiation to the American public.

The public’s growing concern over patient and staff radiation started in 2009 with the high profile CT over-exposure of more than 200 patients in California[5] and was intensified a year later by the New York Times’ “Radiation Boom” blog series.[6] 

This prompted advocacy and governing bodies — including the American College of Radiology (ACR), Joint Commission, CMS and Medical Imaging and Technology Alliance (MITA) — to take action to protect patients and staff from unnecessary and harmful radiation dose. In 2015, the Joint Commission released new standards for managing patient radiation dose, made effective Sept. 1, 2016, which included expanded requirements for clinical decision support and radiologic technologist education, with five key points that serve to guide healthcare providers’ enhancement or development of their department radiation protection program. 

In an effort to reward quality patient care and accelerate their goal of tying physician payment to performance, in March 2015 CMS passed MACRA, establishing new methods to determine physician reimbursement for caring for Medicare beneficiaries, including several metrics for radiation dose management. Underscored by the focus on paying for value over volume, MACRA enables physicians to benchmark, measure and improve diagnostic imaging practices. 

MITA has also established industry best practices for radiation dose equipment to ensure it meets their Smart Dose XR-29 standard, and hospitals are encouraged to work with manufacturers committed to MITA’s requirements aimed at lowering dose and making imaging safer.

These regulations serve the healthcare industry’s effective shift toward value-based care by aiming to increase access to meaningful data critical for clinicians to make informed decisions and customize treatment for patient needs. Hospitals also face potential repercussions of failing to meet these standards, including accreditation risk and associated revenue loss. Not to mention that patients are now more educated than ever, with a wealth of information available to them via the Internet and mainstream publications, meaning more and more patients will be asking for transparency around radiation dose levels. 

Even with new regulatory requirements, there is still room for improvement. As part of the effort to improve access to meaningful data, making radiation dose data available via electronic medical records (EMR) will be a big step in the right direction, especially for cardiac patients who must undergo complex imaging procedures for diagnosis and/or treatment. However, with the advent and continuous development of new cardiac PET radiopharmaceuticals, as well as the proliferation of cardiac CT imaging, patient radiation dose will continue to be a challenge.

In the meantime, it is important for us to come together as an industry — regulatory bodies, vendors and providers — to continue ensuring patients receive the highest quality care possible. Radiology departments have a responsibility (to both patients and staff) to tackle radiation dose management by both justifying exposure before it happens and then, if necessary, optimizing the dose using technology and administrative controls.

 

Related Radiation Dose Management Content

VIDEO: Eye-tracking For Dose Reduction in the Cath Lab

VIDEO: Radiation Dose Monitoring in Medical Imaging

Read the article “States Making A Difference in Radiation Safety.”

Read the article “Discussion on CT Dose Reduction.”

 

Editor’s note: Dominic Siewko is the clinical marketing leader for Philips Healthcare’s DoseWise Solutions and former radiation safety officer at Philips. He is responsible for leading and coordinating radiation health issues globally for all Philips Healthcare imaging systems. Dominic supports radiation emitting medical devices for compliance with international/FDA standards and performs incident analysis/investigation, regulatory body liaison and operates as an internal expert radiation consultant.

 

References:
1. “MACRA — Delivery System Reform, Medicare Payment Reform. What's the Quality Payment Program?” CMS website. Accessed May 2017.  https://www.cms.gov/medicare/quality-initiatives-patient-assessment-instruments/value-based-programs/macra-mips-and-apms/macra-mips-and-apms.html

2. “Approved: Standards Changes for Providers of Diagnostic Imaging Services.” Joint Commission Perspectives, March 2016, Volume 36, Issue 3. https://www.jointcommission.org/assets/1/6/approved_standards_changes_providers_diag_imaging.pdf

3. Andrew J. Einstein. “Effects of Radiation Exposure From Cardiac Imaging: How Good Are the Data?” J Am Coll Cardiol. 2012 Feb 7; 59(6): 553–565. doi:  10.1016/j.jacc.2011.08.079. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272627/

4. Eugenio Picano. “The Risks of Inappropriateness in Cardiac Imaging.” Int J Environ Res Public Health. 2009 May; 6(5): 1649–1664. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697934/

5. Walt Bogdanich.  “After Stroke Scans, Patients Face Serious Health Risks.” New York Times, JULY 31, 2010. http://www.nytimes.com/2010/08/01/health/01radiation.html

6. Walt Bogdanich. “Radiation Boom” Blog Series. New York Times. http://topics.nytimes.com/top/news/us/series/radiation_boom/index.html

Related Content

Appropriate Use Criteria Published for Valvular Heart Disease Imaging Tests
News | Clinical Decision Support| October 16, 2017
The American College of Cardiology (ACC), along with several partnering societies, recently released appropriate use...
Dee Dee Wang runs Henry Ford Hospital's 3D printing lab for its complex structural heart cardiology program.

Dee Dee Wang, M.D., runs Henry Ford Hospital's 3-D printing lab that supports its complex structural heart program.

Feature | 3-D Printing| October 13, 2017 | Dave Fornell
Three-dimensional (3-D) printed anatomic models created from a patient’s computed tomography (CT), magnetic resonance...
ASNC and ASE Team Up to Expand ImageGuide Registry
News | Cardiovascular Ultrasound| October 12, 2017
The American Society of Nuclear Cardiology (ASNC) and the American Society of Echocardiography (ASE) jointly announced...
MR Solutions Showcases Multimodality MRI Solutions on Two Continents
News | Magnetic Resonance Imaging (MRI)| October 11, 2017
MR Solutions took their cryogen-free preclinical multimodality magnetic resonance imaging (MRI) solutions on tour in...
ACR Appropriateness Criteria Add Topics, Increase Diagnostic Imaging Clinical Scenarios
News | Clinical Decision Support| October 11, 2017
Radiologists can enhance the quality and effectiveness of care with the newest release of the ACR Appropriateness...
Medis Releases QAngio CT v3.1
Technology | Computed Tomography (CT)| October 09, 2017
Medis has released a new version of its QAngio CT (computed tomography), which can now be launched from the Medis Suite...
Toshiba Highlights Interventional Imaging at RSNA 2017
News | Interventional Radiology| September 27, 2017
Toshiba Medical announced it will highlight several of its latest vascular and interventional imaging solutions at the...
ScImage and Invia Partnership Announced
News | Cardiac PACS| September 19, 2017
ScImage Inc. and Invia Imaging Solutions recently announced formation of a joint partnership at the American Society of...
CZT SPECT camera detectors offered by GE.

A display of CZT SPECT gamma camera detectors at RSNA 2016. These detectors are more sensitive than those used in older cameras, allowing for faster scans or lower radiation dose. 

Feature | Nuclear Imaging| September 19, 2017 | Dave Fornell
Cardiac nuclear myocardial perfusion imaging (MPI) has been a mature area of imaging for years, but has recently star
Overlay Init