Feature | August 21, 2013

Robot Treats Brain Clots with Steerable Needles

For the last four years, a team at Vanderbilt University has been developing a steerable needle system for “transnasal” surgery

August 21, 2013 — The idea that surgery to relieve the pressure caused by hemorrhaging in the brain is a perfect job for a robotic system is the basic premise of a new image-guided surgical system under development at Vanderbilt University. It employs steerable needles about the size of those used for biopsies to penetrate the brain with minimal damage and suction away the blood clot that has formed.

The system is described in an article accepted for publication in the journal IEEE Transactions on Biomedical Engineering. It is the product of an ongoing collaboration between a team of engineers and physicians headed by Robert J. Webster III, assistant professor, and Kyle Weaver, assistant professor of neurological surgery.

For the last four years, Webster’s team has been developing a steerable needle system for “transnasal” surgery: operations to remove tumors in the pituitary gland and at the skull base that traditionally involve cutting large openings in a patient’s skull and/or face. Studies have shown that using an endoscope to go through the nasal cavity is less traumatic, but the procedure is so difficult that only a handful of surgeons have mastered it.

Webster’s design, which he calls an active cannula, consists of a series of thin, nested tubes. Each tube has a different intrinsic curvature. By precisely rotating, extending and retracting these tubes, an operator can steer the tip in different directions, allowing it to follow a curving path through the body. The single needle system required for removing brain clots was actually much simpler than the multi-needle transnasal system.

The brain-clot system only needs two tubes: a straight outer tube and a curved inner tube. Both are less than 1/20th  of an inch in diameter. When a computed tomography (CT) scan has determined the location of the blood clot, the surgeon determines the best point on the skull and the proper insertion angle for the probe. The angle is dialed into a fixture, called a trajectory stem, which is attached to the skull immediately above a small hole that has been drilled to enable the needle to pass into the patient’s brain.

The surgeon positions the robot so it can insert the straight outer tube through the trajectory stem and into the brain. He also selects the small inner tube with the curvature that best matches the size and shape of the clot, attaches a suction pump to its external end and places it in the outer tube.

Guided by the CT scan, the robot inserts the outer tube into the brain until it reaches the outer surface of the clot. Then it extends the curved, inner tube into the clot’s interior. The pump is turned on and the tube begins acting like a tiny vacuum cleaner, sucking out the material. The robot moves the tip around the interior of the clot, controlling its motion by rotating, extending and retracting the tubes. According to the feasibility studies the researchers have performed, the robot can remove up to 92 percent of simulated blood clots.

“The trickiest part of the operation comes after you have removed a substantial amount of the clot. External pressure can cause the edges of the clot to partially collapse making it difficult to keep track of the clot’s boundaries,” said Webster.

The goal of a future project is to add ultrasound imaging combined with a computer model of how brain tissue deforms to ensure that all of the desired clot material can be removed safely and effectively.

For more information: www.vanderbilt.edu

Related Content

Societies Issue New Performance and Quality Measures for Treating Patients with Heart Attack
News | Cath Lab| October 17, 2017
The American College of Cardiology and the American Heart Association recently released updated clinical performance...
First Patient Enrolled in U.S. Arm of ALIVE Pivotal Heart Failure Trial
News | Heart Failure| October 17, 2017
October 17, 2017 — BioVentrix Inc. recently announced enrollment of the first patient in the U.S.
Dee Dee Wang runs Henry Ford Hospital's 3D printing lab for its complex structural heart cardiology program.

Dee Dee Wang, M.D., runs Henry Ford Hospital's 3-D printing lab that supports its complex structural heart program.

Feature | 3-D Printing| October 13, 2017 | Dave Fornell
Three-dimensional (3-D) printed anatomic models created from a patient’s computed tomography (CT), magnetic resonance...
Videos | Chronic Total Occlusion (CTO)| October 09, 2017
Bill Lombardi, M.D., director of complex coronary artery interventions at the University of Washington, discusses the
BTG Acquires Roxwood Medical
News | Business| October 05, 2017
BTG plc announced it has acquired Roxwood Medical, provider of advanced cardiovascular specialty catheters used in the...
TVA Medical Receives CE Mark for Next-Generation EverlinQ 4 EndoAVF System
News | Vascular Access| October 04, 2017
TVA Medical Inc. announced that its everlinQ 4 endoAVF System has received CE Mark in the European Union. The...
Reflow Medical's Wingman Crossing Catheter Receives FDA Clearance for Coronary Indication
News | Catheters| October 02, 2017
October 2, 2017 — Reflow Medical Inc. announced that the company has received 510(k) clearance from the U.S.
TherOx Gains FDA PMA Approval for SSO2 Therapy System
Technology | Cath Lab| September 29, 2017
September 29, 2017 — TherOx Inc. announced that the U.S.
Avinger Receives CE Mark for In-Stent Restenosis Indication With Pantheris Image-Guided Atherectomy
Technology | Atherectomy Devices| September 29, 2017
Avinger Inc. recently announced Conformité Européenne (CE) Marking approval for treating in-stent restenosis with the...
Majority of High-Risk Stroke Patients Not Being Screened for Common Risk Factors
News | Stroke| September 28, 2017
September 28, 2017 — New research revealed that on average, more than 75 percent of people aged 65 and older worldwid
Overlay Init