Feature | July 15, 2011| Dave Fornell

Trends in Cardiac Advanced Visualization

Historically, advanced visualization systems have been rigid, “one size fits all” products. However, recent developments have enabled fully customizable protocols and user interfaces, ensuring the system adapts to each user’s workflow. Newer software also enables multi-modality applications that can manipulate computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and other DICOM modalities. This has enabled easier, faster workflows while at the same time reducing the hardware footprint. Web and cloud-based software applications and processing are also making advanced visualization accessible to users anywhere in a hospital, healthcare system, or even at home or when they are on the road.


In recent years, advanced visualization has also become more accessible and prevalent. What used to be a niche technology, available only on dedicated and expensive workstations, has become very common. The software is now included in most workstations and multi-site picture archiving and communications systems (PACS).


Improvements in hardware performance, along with the increase of Internet speed, have allowed more users access to advanced visualization tools from remote locations outside the radiology department.


Advanced visualization software is also moving into more specialized applications requiring very unique post-processing. This includes apps for liver analysis, chronic obstructive pulmonary disease (COPD), oncology management, radiation treatment and surgical planning. It’s also expected that users will start requiring vendors to provide specific applications with U.S. Food and Drug Administration (FDA) clearances reflecting the ability to achieve reproducible and accurate results.


Mobile Access to Imaging
Over the past year, manufacturers say there has been a noticeable trend with the adoption of tablet computers (such as the iPad) and smartphones by the medical community. Physicians are using their tablets and mobile devices to review studies and share them with their patients and referring physicians. This trend is expected to increase over time and will change the way physicians read studies. They are moving away from the reading room to the patient’s bedside, and from the physician’s office and home, said Yael Gross, administration manager, Shina Systems Ltd.


Several companies have launched cloud-based workstations that use the cloud’s computing power to host the application and run the software over a Web connection.


3-D Surgical Modeling
A big trend in advanced visualization is the creation of 3-D models from CT and MRI scans to help guide surgical or minimally invasive procedures, said Rik Primo, director of marketing and strategic relationships, image and knowledge management, Siemens Healthcare. These models are created in one of three ways: doctors creating the work themselves; a 3-D lab creates the images and sends them to the doctor or radiology; or 3-D reconstructions are outsourced and transmitted via the Web.  


Analysis of Motion
A major innovation in the past year has been the development of 4-D functional analysis of CT data sets of 18,000 or more slices using deformable registration. This software allows interrogation of organs, such as the heart, in motion. There are several companies and universities that are now developing deformable registration algorithms, primarily for research. Ziosoft used supercomputing technology to create the first commercially available deformable registration software for advanced visualization.


Deformable registration takes anatomy, such as the heart, that is moving and changing size and shape as it is captured along different time points. The software tracks, or registers, the changes in the anatomy from phase-to-phase, allowing true fidelity 4-D. This requires very complex supercomputing algorithms, which historically required significant computational time and power. However, advances in hardware and algorithm development now allow what used to take days or weeks of processing time to be achieved in hours or even minutes.


Ziosoft believes deformable registration offers several advantages, including a method of noise reduction, leading to better radiation dose management decisions. It also allows intelligent interpolation of voxels between frames for better motion coherence. It can serve as a gateway to functional analytics to analyze relations between structures. The software also offers better tracking of serial data to determine how a tumor is changing in volume and molecular structure over time.


Improved segmentation algorithms may lead to new applications in cardiac imaging, such as valve function and electrophysiology evaluation.


Advances in CPU resource allocation has allowed Aze of North America to render enormous volumes of data. The Aze Virtual Place Formula workstation can process several thousand CT slices at one time. This enables whole-heart 4-D analysis of heart valves in motion from data sets produced by a 320-slice CT scanner.


Radiation Dose Reduction
CT radiation dose awareness is also in the forefront in the minds of clinicians who are caught at the crossroads of delivering optimal diagnostic quality while delivering the lowest patient dose possible. Vendors, such as TeraRecon,  have developed software algorithms to take typically noisy low-dose scans and improve the image quality.  
 

Product Comparison
This story served as an inroduction to a comparison chart of specifications for advanced visualization post-
processing software systems that create 3-D and 4-D renderings from image data sets. These systems also aid in review and analysis of multiplanar image data sets. The chart can be found under the comparison chart tab on this website. Participants include:

3mensio
www.3mensio.com

AZE
www.azeofamerica.com

Carestream Health
www.carestreamhealth.com/3D

Fujifilm Medical Systems
www.fujifilmusa.com/products/medical/radiology/3D

GE Healthcare
www.gehealthcare.com/dexus

Siemens Healthcare
usa.siemens.com/syngovia

TeraRecon Inc.
www.terarecon.com

Visage Imaging
www.visageimaging.com

Vital Images
www.vitalimages.com/Solutions/Vitrea_Enterprise_Suite.aspx

Ziosoft
www.ziosoftinc.com

Related Content

Strain Imaging Improves Cardiac Surveillance of Certain Breast Cancer Patients
News | Cardio-oncology| May 03, 2017
Epsilon Imaging Inc. announced a research study using EchoInsight was presented at the American College of Cardiology (...
3-D-printed Model of Stenotic Intracranial Artery Enables Vessel-Wall MRI Standardization
News | 3-D Printing| April 18, 2017
A collaboration between stroke neurologists at the Medical University of South Carolina (MUSC) and bioengineers at the...
3-D Printed Patch Can Help Mend a ‘Broken’ Heart

This photo shows the 3D-bioprinted cell patch in comparison to a mouse heart. When the patch was placed on a live mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Image courtesy of Patrick O’Leary, University of Minnesota.

News | Stem Cell Therapies| April 18, 2017
April 18, 2017 — A team of biomedical engineering researchers, led by the University of Minnesota, has created a revo
Echopixel, True 3D Viewer, interactive virtual reality, pediatric surgery, increased clinical adoption
News | Advanced Visualization| March 21, 2017
March 21, 2017 — EchoPixel recently announced progress in the clinical adoption of its True 3D...
Stratasys, 3DHEART trial, open enrollment, 3-D printed pediatric heart models
News | 3-D Printing| March 13, 2017
Stratasys Ltd. announced last week enrollment is now open for 3DHEART, an investigator-initiated trial. 3DHEART, which...
Sponsored Content | Videos | HIMSS| March 10, 2017
ITN Editor Dave Fornell takes a tour of some of the most innovative new technology that was displayed on the expo flo
Dee Dee Wang, Henry Ford Hospital, 3D printing for cardiology, 3-D

Dr. Dee Dee Wang with part of Henry Ford Hospital's collection of 3-D printed hearts used for education and to preplan structural heart procedures.

Feature | 3-D Printing| March 03, 2017
March 3, 2017 — A Henry Ford Hospital study found a 100 percent success rate in left atrial appendage (LAA) occlusion
EchoPixel, True 3-D Print Support, 3-D printing, True 3-D Viewer, HIMSS 2017, RSNA 2017
Technology | 3-D Printing| February 28, 2017
EchoPixel recently announced True 3-D print support functionality, a new set of software tools designed to assist...
Children's Hospital Los Angeles, CHLA, Frank Ing, 3-D printed model, pulmonary artery

Pediatric interventional cardiologist Frank Ing, M.D., chief of the Division of Cardiology and co-director of the Heart Institute at Children’s Hospital Los Angeles. Photo courtesy of Children's Hospital Los Angeles.

Feature | 3-D Printing| February 22, 2017
When Children’s Hospital Los Angeles cardiologists found evidence that a portion of Nate Yamane’s pulmonary artery they...
augmented reality, virtual reality, medical imaging, surgery, operating room

A 2-D view of what operators see when viewing actual 3-D medical images in the HoloLens augmented reality system using TeraRecon's new software.

Technology | Advanced Visualization| February 21, 2017
TeraRecon debuted their new high-performance, cloud-based augmented reality solution, the HoloPack Portal, at the 2017...
Overlay Init