News | Cardiovascular Clinical Studies | May 21, 2024

Association of Inflammatory and Metabolic Biomarkers and Accelerated Aging in Cardiac Catheterization Patients

Correlation between transcriptomic age and other epigenetic aging predictors

May 21, 2024 — A new research paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 16, Issue 8, entitled, “Associations among NMR-measured inflammatory and metabolic biomarkers and accelerated aging in cardiac catheterization patients.”

Research into aging has grown substantially with the creation of molecular biomarkers of biological age that can be used to determine age acceleration. Concurrently, nuclear magnetic resonance (NMR) assessment of biomarkers of inflammation and metabolism provides researchers with new ways to examine intermediate risk factors for chronic disease.

In this new study, researchers Henry Raab, Elizabeth R. Hauser, Lydia Coulter Kwee, Svati H. Shah, William E. Kraus, and Cavin K. Ward-Caviness from the U.S. Environmental Protection Agency and Duke University used data from a cardiac catheterization cohort to examine associations between biomarkers of cardiometabolic health and accelerated aging assessed using both gene expression (Transcriptomic Age) and DNA methylation (Hannum Age, GrimAge, Horvath Age, and Phenotypic Age). 

“This study utilizes the CATHGEN cohort from the Jiang et al. study to investigate associations between multiple epigenetic and transcriptomic aging biomarkers and a broad array of NMR-based measures of inflammation, lipid homeostasis, and diabetes risk.”

Linear regression models were used to associate accelerated aging with each outcome (cardiometabolic health biomarkers) while adjusting for chronological age, sex, race, and neighborhood socioeconomic status. Their study shows a robust association between GlycA and GrimAge (5.71, 95% CI = 4.36, 7.05, P = 7.94 × 10−16), Hannum Age (1.81, 95% CI = 0.65, 2.98, P = 2.30 × 10−3), and Phenotypic Age (2.88, 95% CI = 1.91, 3.87, P = 1.21 × 10−8). The researchers also saw inverse associations between apolipoprotein A-1 and aging biomarkers. 

Read the full paper: DOI: https://doi.org/10.18632/aging.205758 


Related Content

News | Heart Failure

Oct. 22, 2025 – Ventric Health, a medtech innovator enabling early detection of heart failure (HF) in a primary care ...

Home October 28, 2025
Home
News | Heart Failure

Oct. 16, 2025 — Imbria Pharmaceuticals, has announced a partnership with the Hypertrophic Cardiomyopathy Association ...

Home October 16, 2025
Home
News | Heart Failure

Sept. 24, 2025 — The Family Heart Foundation, a leading research and advocacy organization, has announced the online ...

Home September 24, 2025
Home
News | Heart Failure

Sept. 22, 2025 — The latest findings on heart failure (HF) published by the Heart Failure Society of America (HFSA) ...

Home September 22, 2025
Home
News | Heart Failure

Sept. 11, 2025 — Newswise — A new Mayo Clinic study finds that many heart attacks in people under 65 — especially women ...

Home September 15, 2025
Home
News | Heart Failure

Aug. 14, 2025 — Analytics For Life, in collaboration with its U.S. commercial partner CorVista Health, announced they ...

Home August 15, 2025
Home
News | Heart Failure

Aug. 6, 2025 — Ventric Health, a medtech company enabling early detection of heart failure (HF) in a primary care ...

Home August 06, 2025
Home
News | Heart Failure

July 14, 2025 — Bayer has announced that the U.S. Food and Drug Administration (FDA) approved KERENDIA (finerenone) to ...

Home July 14, 2025
Home
News | Heart Failure

June 23, 2025 — iRhythm Technologies, Inc. announced the results from two large-scale real-world studies presented at ...

Home June 25, 2025
Home
News | Heart Failure

June 3, 2025 — Bayer announced it will present multiple new analyses of the Kerendia (finerenone) clinical trial program ...

Home June 04, 2025
Home
Subscribe Now