News | September 05, 2013

Bismuth-Carrying Nanotubes Show Promise for CT Scans

Rice-led collaboration finds element useful as contrast agent for tracking stem cells

An electron microscope image shows bismuth ions (dark lines) sitting inside carbon nanotubes.

September 5, 2013 — Scientists at Rice University have trapped bismuth in a nanotube cage to tag stem cells for X-ray tracking. Bismuth is probably best known as the active element in a popular stomach-settling elixir and is also used in cosmetics and medical applications. Rice chemist Lon Wilson and his colleagues are inserting bismuth compounds into single-walled carbon nanotubes to make a more effective contrast agent for computed tomography (CT) scanners. Details of the work by Wilson's Rice team and collaborators at the University of Houston, St. Luke's Episcopal Hospital and the Texas Heart Institute appear in the Journal of Materials Chemistry B.

This is not the first time bismuth has been tested for CT scans, and Wilson's lab has been experimenting for years with nanotube-based contrast agents for magnetic resonance imaging (MRI) scanners. But this is the first time anyone has combined bismuth with nanotubes to image individual cells, he said.

"At some point, we realized no one has ever tracked stem cells, or any other cells that we can find, by CT," Wilson said. "CT is much faster, cheaper and more convenient, and the instrumentation is much more widespread [than MRI]. So we thought if we put bismuth inside the nanotubes and the nanotubes inside stem cells, we might be able to track them in vivo in real time."

Experiments to date confirm their theory. In tests using pig bone marrow-derived mesenchymal stem cells, Wilson and lead author Eladio Rivera, a former postdoctoral researcher at Rice, found that bismuth-filled nanotubes, which they call [email protected], produce CT images far brighter than those from common iodine-based contrast agents.

"Bismuth has been thought of before as a CT contrast agent, but putting it in nanotube capsules allows us to get them inside cells in high concentrations," Wilson said. "That lets us take an X-ray image of the cell."

The capsules are made from a chemical process that cuts and purifies the nanotubes. When the tubes and bismuth chloride are mixed in a solution, they combine over time to form [email protected] The nanotube capsules are between 20 and 80 nanometers long and about 1.4 nanometers in diameter.

"They're small enough to diffuse into the cell, where they then aggregate into a clump about 300 nanometers in diameter," said Wilson. "We think the surfactant used to suspend them in biological media is stripped off when they pass through the cell membrane. The nanotubes are lipophilic, so when they find each other in the cell they stick together."

Wilson said his team's studies showed stem cells readily absorb [email protected] without affecting their function. "The cells adjust over time to the incorporation of these chunks of carbon and then they go about their business," he said.

[email protected] have clear advantages over commonly used iodine-based contrast agents, Wilson said. "Bismuth is a heavy element, down near the bottom of the periodic table, and more effective at diffracting X-rays than almost anything else you could use," he said. Once the bismuth is encapsulated in the nanotubes, the agent can produce high contrast in very small concentrations. The nanotube surfaces can be modified to improve biocompatibility and their ability to target certain types of cells. They can also be modified for use with MRI, positron emission tomography (PET) and electron paramagnetic resonance imaging systems.

The Rice lab is currently working to double the amount of bismuth in each nanotube. "Bismuth ions appear to get into the nanotubes by capillary action, and we think we can improve on the process to at least double the contrast, maybe more," Wilson said. "Then we would like to combine both bismuth and gadolinium into one nanotube to produce a bimodal contrast agent that can be tracked with both MRI and CT scanners."

For more information: www.rice.edu

Related Content

Bayer Arterion contrast Injector used to administer medical imaging contrast for CT scans.

Bayer Healthcare's Arterion contrast injector system.

Feature | Contrast Media| June 19, 2017 | Dave Fornell
Here are several updates in medical imaging...
New Image Wisely Radiation Safety Case Discusses Child-Sizing CT Dose
News | Radiation Dose Management| June 19, 2017
The tenth special edition Image Wisely Radiation Safety Case is now available to help radiologists, imaging...
Philips Dosewise portal allows X-ray radiation dose tracking for individual patients

An example of radiation dose tracking software is Philips Dosewise portal, which allows X-ray radiation dose tracking for individual patients by modality, body region and exam type.

Feature | Radiation Dose Management| June 13, 2017 | Dominic Siewko
In recent years, radiation dose management awareness has heightened across the healthcare industry to address growing
Radiation dose monitoring in cardiac imaging, cath lab angiography

An example of dose monitoring software from Sectra, which can record dose levels by exam type, modality and set alert levels. 

Feature | Radiation Dose Management| June 12, 2017 | Jeff Zagoudis
For all the benefits of medical imaging, most forms come with
HRS released a consensus statement on MRI for patients with cardiac implantable electronic devices
Feature | May 15, 2017
May 15, 2017 — The Heart Rhythm Society (HRS) released a first-of-its-kind consensus statement in the United States o

Physicians will need to use a CMS-certified appropriate use criteria (AUC) clinical decision support software that documents the appropriateness of an imaging order to receive full reimbursement for Medicare patients starting Jan. 1, 2018.

Feature | Cardiac Imaging| April 18, 2017 | Dave Fornell
As part of U.S. healthcare reform efforts, starting Jan.
University of California Study Searches for Consistent CT Dose Best Practices
News | Radiation Dose Management| April 17, 2017
A new study led by UC San Francisco has found that radiation doses can be safely and effectively reduced – and more...
cardiac CT showing a severe right coronary artery lesion on a Toshiba Aquillion One

A cardiac CT showing a severe right coronary artery lesion on both 3-D and curved multiplanar reconstructions from a Toshiba Aquilion One CT system. The newest generation of CT scanners have very fast gantry speeds to freeze cardiac motion, improved image quality and much lower doses than previous generation scanners from a decade ago.

Feature | CT Angiography (CTA)| April 13, 2017 | Dave Fornell
Cardiac computed tomography (CT) imaging really took off a decade ago with the introduction of 64-slice scanners, whi
Overlay Init