News | Artificial Intelligence | April 02, 2019| Jeff Zagoudis, Associate Editor

FDA Proposes New Review Framework for AI-based Medical Devices

Discussion paper describes need to regulate artificial intelligence that continuously learns

FDA Proposes New Review Framework for AI-based Medical Devices

April 2, 2019 — U.S. Food and Drug Administration (FDA) Commissioner Scott Gottlieb, M.D., announced Tuesday the agency is pursuing a new framework in which to review artificial intelligence (AI)-based medical software and devices to ensure ongoing effectiveness and patient safety. The agency released a 20-page discussion paper explaining the need for a new framework, the tenets of a total product lifecycle (TPLC) approach to certification, and examples of potential real-world AI software modifications that may or may not be permitted under the proposed framework. The FDA is asking for comments and feedback from all parties to inform future decisions.

Locked Versus Adaptive AI

To date, only two AI-based technologies have received full FDA approval and are in clinical use — IDx-DR, a software that detects diabetic retinopathy, and the Viz.AI Contact application that analyzes computed tomography (CT) images for potential signs of stroke. Gottlieb noted that both of these technologies can be considered “locked” algorithms. This means that the base algorithms can only be modified by the manufacturer, and must be manually verified and validated by them as well. Other AI algorithms are considered “adaptive” or “continuously learning,” and these learn from new user data acquired through real-world use.

In the statement, Gottlieb acknowledged the vast potential of such adaptive algorithms, but also insisted that these more open technologies must still adhere to the FDA’s safety and effectiveness standards.

Total Product Lifecycle Regulatory Approach

The discussion paper describes how the current 510(k) approval pathway takes a risk-based approach, requiring new premarket submissions for some software modifications. Categories of software modifications that may require a premarket submission include:

  • A change that introduces a new risk or modifies an existing risk that could result in significant harm;
  • A change to risk controls to prevent significant harm; and
  • A change that significantly affects clinical functionality or performance specifications of the device.

For today’s AI-based technologies, the discussion paper notes these considerations must be balanced with the ability for the software to “continue to learn and evolve over time to improve patient care.”

To satisfy all of these requirements, the discussion paper explores the potential of a total product lifecycle (TPLC)-based approach to certification. In this model, the FDA would “assess the culture of quality and organizational excellence of a particular company, and have reasonable assurance of the high quality of their software development, testing and performance monitoring of their products.”

One of the key elements considered in the TPLC approach will be a software’s predetermined change control plan. This plan would provide detailed information about the types of anticipated modifications based on the algorithm’s re-training and update strategy, and the associated methodology being used to implement those changes in a controlled manner that manages risks to patients. According to Gottlieb, the goal of a revised framework would to assure that ongoing algorithm changes:

  • Follow pre-specified performance objectives and change control plans;
  • Use a validation process that ensures improvements to the performance, safety and effectiveness of the AI software; and
  • Include real-world monitoring of performance once the device is on the market to ensure safety and effectiveness are maintained.

The agency is taking public comment on the contents of the discussion paper through June 3, 2019. The full discussion paper can be read here. Comments can be submitted here.

For more information: www.fda.gov

Related Content

AI Could Use EKG Data to Measure Patient's Overall Health Status

Image courtesy of iStock

News | Artificial Intelligence | August 29, 2019
In the near future, doctors may be able to apply artificial intelligence (AI) to electrocardiogram data in order to...
Half of Hospital Decision Makers Plan to Invest in AI by 2021
News | Artificial Intelligence | August 08, 2019
A recent study conducted by Olive AI explores how hospital leaders are responding to the imperative to drive efficiency...
Artificial Intelligence Solution Improves Clinical Trial Recruitment

A nurse examines a patient in the Emergency Department of Cincinnati Children’s, where researchers successfully tested artificial intelligence-based technology to improve patient recruitment for clinical trials. Researchers report test results in the journal JMIR Medical Informatics. Image courtesy of Cincinnati Children’s.

News | Artificial Intelligence | July 31, 2019
Clinical trials are a critical tool for getting new treatments to people who need them, but research shows that...

An example of AI-assisted automation developed by TomTec, where a deep learning algorithm automatically marks the myocardial borders and performs auto quantification This removes time consuming tasks to free up the operator to spend more time with patients and helps make exams more reproducible.

Feature | Artificial Intelligence | July 26, 2019
Intelligent software solutions (aka...
vRad Presents AI Model to Assess Probability of Aortic Dissection
News | Artificial Intelligence | July 01, 2019
vRad (Virtual Radiologic), a Mednax company recently made a scientific presentation, “Screening for Aortic Dissection...
Videos | Artificial Intelligence | June 28, 2019
This is a quick example of how artificial intelligence (AI) is being integrated on the back end of cardiac ultrasound
Third FDA Clearance Announced for Zebra-Med's AI Solution for Brain Bleed Alerts
Technology | Artificial Intelligence | June 19, 2019
Zebra Medical Vision announced it has received its third U.S. Food and Drug Administration (FDA) 510(k) clearance for...
Overlay Init