News | Stent Grafts | May 18, 2016

First Clinical Use of Bioabsorbable Vascular Grafts in Children Shows Promise

Synthetic grafts replaced by body’s own tissue over time offer potential for fewer long-term complications

bioabsorbable vascular graft, children, feasibility study, Bakoulev Center Moscow, AATS 2016 meeting

Image courtesy of Bakoulev Scientific Center for Cardiovascular Surgery

May 18, 2016 — Bioabsorbable heart valves or blood vessels are designed to harness the body’s innate healing process, enabling the natural restoration of complex body parts as the synthetic graft is absorbed. At the 96th American Association for Thoracic Surgery (AATS) Annual Meeting, surgeons from the Bakoulev Center for Cardiovascular Surgery, Moscow, reported the results of implantation of bioabsorbable vascular grafts placed into five children born with serious cardiovascular anomalies. According to the investigators, this is the first-ever clinical trial of a bioabsorbable cardiovascular device.

“The positive results of the study provide hope for a new therapeutic approach in cardiovascular valve replacement called Endogenous Tissue Restoration (ETR). This is potentially a revolutionary approach to regenerative medicine in cardiovascular treatment,” said lead investigator Leo Bockeria, M.D.

The procedure was designed to help children born with single-ventricle anomalies, a term used to describe a group of cardiac defects that shares the common feature that only one of two ventricles functions adequately. This can be due to lack of a heart valve, abnormal pumping ability of the heart or other problems. The surgical procedure, known as a Fontan procedure, involves diverting the venous blood from the right atrium to the pulmonary arteries without passing through the area of the right ventricle.

In this prospective, single-center feasibility study, five children aged 4.5 to 12.5 years born with a single-ventricle congenital malformation were implanted with a bioabsorbable graft connecting the inferior vena cava with the right pulmonary artery during an extracardiac Fontan procedure. Patients were followed for 12 months after surgery using echocardiography, computed tomography (CT) scan and magnetic resonance imaging (MRI). No device-related adverse events were reported.

The grafts are composed of supramolecular bioabsorbable polymers, manufactured using a proprietary electrospinning process by European medical device company Xeltis. The grafts have no size limitations, although this study used grafts that were 18 and 20 mm in diameter. Histological studies of the grafts in sheep have shown that graft implantation is followed by initial infiltration of inflammatory cells, which induces physiological healing and tissue formation. This is followed by degradation of the implant scaffold with eventual reduction of the inflammatory response.

The investigators reported that all five patients successfully recovered from the procedure, with significant improvement noted in the patients’ general condition. Imaging studies demonstrate anatomical and functional stability of the grafts.

Although longer follow-up is needed, the investigators said that the procedure has the potential to improve cardiac and vascular surgical procedures by reducing complications resulting from permanently-placed implants. This is especially important for a child who must live with the after-effects of surgery over his lifetime.

The Xeltis bioabsorbable pulmonary heart valve will enter clinical trials in Europe this year. The U.S. Food and Drug Administration (FDA) has recently granted a Humanitarian Use Device (HUD) designation for the device for the the correction or reconstruction of right ventricular outflow tract (RVOT).

For more information: www.aats.org

Related Content

Sponsored Content | Videos | Cath Lab | October 24, 2018
Michael Flaherty, M.D., discusses a study published in Circulation Research which finds that use of hemodynamic suppo
Philips Showcases Integrated Solutions for Cardiovascular Care at TCT 2018
News | Cath Lab | September 20, 2018
At the Transcatheter Cardiovascular Therapeutics (TCT) annual meeting, Sept. 21–25 in San Diego, Philips is showcasing...
Sponsored Content | Videos | Cath Lab | September 19, 2018
William O’Neill, M.D., outlines his recent clinical publication of AMICS patients from the Impella Quality (IQ) datab
A complex PCI case to revascularize a chronic total occlusion (CTO) at Henry Ford Hospital in Detroit. Complex PCI and CHIP cases are increasing patient volumes in the cath lab and using a minimally invasive approach in patients who otherwise would have been sent for CABG. Pictured is Khaldoon Alaswad, M.D. DAIC staff photo by Dave Fornell

A complex PCI case to revascularize a chronic total occlusion (CTO) at Henry Ford Hospital in Detroit. Complex PCI and CHIP cases are increasing patient volumes in the cath lab and using a minimally invasive approach in patients who otherwise would have been sent for CABG. Pictured is Khaldoon Alaswad, M.D. (right) who is proctoring a fellow in treating CTOs.

Feature | Cath Lab | September 13, 2018 | Artur Kim, Kamran Zamanian
Coronary artery disease (CAD) is a multifaceted disease that demands various approaches in terms of diagnosis and tre
Videos | Cath Lab | August 13, 2018
Jeffrey Schussler, M.D., FACC, FSCAI, FSCCT, FACP, interventional cardiologist at Baylor Scott White Heart and Vascul
Shockwave Launches Coronary Intravascular Lithotripsy in Europe
News | Cath Lab | May 30, 2018
Shockwave Medical recently announced the European commercial availability of Intravascular Lithotripsy (IVL) for...
FFR software on the GE Centricity CVIS. A trial from the 2018 EuroPCR meeting showed FFR improves long-term outcomes.
News | Cath Lab | May 29, 2018
May 29, 2018 — Ongoing controversy exists regarding the role of percutaneous coronary intervention (PCI) for stable c
Overlay Init