News | June 26, 2014

New 'Flight Simulator' Technology Gives NYU Langone Neurosurgeons a Peek Inside Brain Before Surgery

Surgical rehearsal platform uses CT and MRI scans to create 3-D virtual reality map to aid in procedures such as tumor removals and aneurysm repairs

June 25, 2014 — NYU Langone Medical Center is now using a novel technology that serves as a "flight simulator" for neurosurgeons, allowing them to rehearse complicated brain surgeries before making an actual incision on a patient.

The new simulator, called the Surgical Rehearsal Platform (SRP), creates an individualized walkthrough for neurosurgeons based on 3-D imaging taken from the patient’s computed tomography (CT) and magnetic resonance imaging (MRI) scans. Surgeons then plan and rehearse the surgeries using the software, which combines life-like tissue reaction with accurate modeling of surgical tools and clamps, to enable them to navigate multiple-angled models of a patient’s brain and vasculature.

The SRP was developed by Surgical Theater of Cleveland, Ohio. This augmented reality technology may help improve safety and efficiency during surgeries for conditions including pituitary tumors, skull base tumors, intrinsic brain tumors, aneurysms, and arteriovenous malformations (AVMs), and could potentially allow surgeons from around the world to simultaneously collaborate on a patient’s case in real-time.

"We are excited to partner with Surgical Theater to bring their Surgery Rehearsal Platform to our institution," said John G. Golfinos, M.D., chair of the department of neurosurgery at NYU Langone Medical Center and associate professor of neurosurgery at NYU School of Medicine. "The reaction of tissue in these 3-D images is incredibly life-like and modeling of surgical tools is equally impressive. The SRP also will enhance the training of medical students, residents and fellows and help them hone their skills in new and more meaningful ways."

When using the SRP, surgeons can rehearse a specific patient’s case on computer monitors connected to controllers that simulate surgical tools. For example, when rehearsing a surgery for an aneurysm, the SRP reacts realistically when the surgeon virtually applies a clip to the blood vessel. The surgeon then can assess the tissue’s mechanical properties and view realistic microscopic characteristics including shadowing and texture to plan approaches, so that when the real surgery is being performed, doctors have rehearsed and already have a mental picture of what is being seen in the OR.

The SRP obtained clearance from the U.S. Food and Drug Administration (FDA) in February 2013 as a pre-operative software for simulating and evaluating surgical treatment options.

In addition, a newer-generation of this technology from Surgical Theater, the Surgical Navigation Advanced Platform (SNAP), has an application pending with the FDA to allow the tool to be taken into the operating room, so surgeons can see behind arteries and other critical structures in real-time.

For more information: www.surgicaltheater.net

Related Content

Fujitsu VR Heart Simulator Viewer Features in University of Tokyo Lecture

Stereoscopic view with a heart viewer. Image courtesy of Fujitsu.

News | Simulators| September 21, 2017
September 21, 2017 — Fujitsu announced that the University of Tokyo recently used...
CDN to Integrate Advanced Cardiac Imaging Tools From DiA Imaging Analysis
Technology | August 10, 2017
August 10, 2017 — CDN recently announced a new partnership agreement with DiA Imaging Analysis Ltd., makers of next-g
3D printing of the heart and coronary artery tree from a patient's CT scan.
Sponsored Content | Webinar | 3-D Printing| August 09, 2017
Learn how 3-D printing empowers medical device manufacturer Medtronic to bring products to market faster, develop bet
FFR-CT, heartflow

An example of an FFR-CT image, showing the FFR values for all coronary vessel segments and the reduction in hemodynamic flow after specific lesions.

News | CT Angiography (CTA)| July 12, 2017
July 12, 2017 — The American Medical Association (AMA) has granted a Category III Tracking Code for estimated coronar
Ziosoft's PhyZiodynamics 4-D processing showing a replaced aortic valve

An example of Ziosoft's PhyZiodynamics 4-D processing showing a replaced aortic valve.

Technology | Computed Tomography (CT)| July 12, 2017
July 12, 2017 — At the 2017 annual meeting for the Society of Cardiovascular Computed Tomography (SCCT), Ziosoft show
GE Additive and Stryker Announce Additive Manufacturing Partnership
News | 3-D Printing| July 06, 2017
GE Additive and Stryker have entered a partnership agreement to support Stryker’s growth in additive manufacturing. The...
Innovative Cardiovascular Ultrasound Solutions Showcased at ASE 28th Annual Scientific Sessions
News | Cardiovascular Ultrasound| June 01, 2017
June 1, 2017 — More than 50 companies and organizations will display their latest products and services at the Americ
Strain Imaging Improves Cardiac Surveillance of Certain Breast Cancer Patients
News | Cardio-oncology| May 03, 2017
Epsilon Imaging Inc. announced a research study using EchoInsight was presented at the American College of Cardiology (...
3-D-printed Model of Stenotic Intracranial Artery Enables Vessel-Wall MRI Standardization
News | 3-D Printing| April 18, 2017
A collaboration between stroke neurologists at the Medical University of South Carolina (MUSC) and bioengineers at the...
3-D Printed Patch Can Help Mend a ‘Broken’ Heart

This photo shows the 3D-bioprinted cell patch in comparison to a mouse heart. When the patch was placed on a live mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Image courtesy of Patrick O’Leary, University of Minnesota.

News | Stem Cell Therapies| April 18, 2017
April 18, 2017 — A team of biomedical engineering researchers, led by the University of Minnesota, has created a revo
Overlay Init