News | Magnetic Resonance Imaging (MRI) | August 28, 2019

New MRI Technique Spots Heart Muscle Scarring Without Kidney Damage

3D MRI computing can measure strain in the heart using image registration method without gadolinium

Displacement comparison at the end-systolic frame and final frame

Displacement comparison at the end-systolic frame and final frame. The three patients (V6, V10, V16) with different left-ventricle walls are shown. Point-to-surface distance is a measure to estimate the distance of a point from the reference surface. Image courtesy of WMG, University of Warwick

The 3DTag MRI volume and segmented LV mesh

The 3DTag MRI volume and segmented LV mesh. Image courtesy of WMG, University of Warwick

August 28, 2019 — A new 3-D magnetic resonance imaging (MRI) computing technique developed by scientists in WMG at the University of Warwick focuses on hierarchical template matching (HTM) to diagnose cardiac disease without the use of gadolinium contrast. The technique is explored in an article in the journal Scientific Reports.1

MRI has long been used to diagnose cardiomyopathy, heart attacks, irregular heartbeats and other heart disease. Traditionally when a patient goes for an MRI scan they are given a dose of gadolinium, which reacts with the magnetic field of the scanner to produce an image of the protons in the metal realigning with the field. The faster the protons realign, the brighter the image features to show where the dead muscles are in the heart and what the diagnosis is. 

The dose of gadolinium, however, can have detrimental effects to other parts of the body, particularly the risk of kidney failure. 

The hierarchical template matching technique involves:

  • A numerically stable technique of left ventricular (LV) myocardial tracking;
  • A 3-D extension of local weighted mean function to transform MRI pixels; and
  • A 3-D extension of the HTM model for myocardial tracking problems.

Use of this technique eliminates the need for gadolinium, reducing the risk of damage to other organs. 

Prof. Mark Williams from WMG at the University of Warwick said, “Using 3D MRI computing technique we can see in more depth what is happening to the heart, more precisely to each heart muscle, and diagnose any issues such as remodeling of the heart that causes heart failure. The new method avoids the risk of damaging the kidney opposite to what traditional methods do by using gadolinium.” 

Jayendra Bhalodiya, who conducted the research from WMG, University of Warwick added, “This new MRI technique also takes away stress from the patient, as during an MRI the patient must be very still in a very enclosed environment, meaning some people suffer from claustrophobia and have to stop the scan. Often when they do this they have to administer another dose of the damaging gadolinium and start again. This technique doesn’t require a dosage of anything, as it tracks the heart naturally.”

For more information: www.nature.com

Related Content

FDA Approves Bayer's Gadavist Contrast for Cardiac MRI in Adult Coronary Artery Disease Patients

Concerns Over Gadolinium MRI Contrast Toxicity

VIDEO: How Serious is MRI Gadolinium Retention in the Brain and Body?

Reference

1. Bhalodiya J.M., Palit A., Ferrante E., et al. Hierarchical Template Matching for 3D Myocardial Tracking and Cardiac Strain Estimation. Nature Scientific Reports, published online Aug. 28, 2019. https://doi.org/10.1038/s41598-019-48927-2

Related Content

An example of a CT coronary artery calcium scoring exam showing how each vessel segment is scored to assess a patient's risk for a future heart attack. Example is from Philips Healthcare.

An example of a CT coronary artery calcium scoring exam showing how each vessel segment is scored to assess a patient's risk for a future heart attack. Example is from Philips Healthcare.

News | Cardiac Imaging | September 25, 2020
September 25, 2020 — A study out of University Hospitals (UH) found that removing the cost barrier for coronary arter
Rafael Rivero, M.D., Global Head of Medical Affairs at MSI, said: "The importance of MyoStrain cannot be understated because of the test's immense clinical value and ability to quantify intramyocardial dysfunction across 48 segments of the heart. In a six-heartbeat MRI scan, MyoStrain arms physicians with novel clinical information about a patient's heart health."
News | Cardiac Imaging | August 11, 2020
August 11, 2020 — Myocardial Solutions, Inc. and United Imaging, Inc.
The Mindways Solid phantom with volume of interest in the quality assurance phantom (red circles, left side). A participant's noncontrast-enhanced axial CT (right side) with volume of interest (yellow circles) in the trabecular bone compartment of three vertebrae for bone mineral density measurements. Image courtesy of Radiological Society of North America

The Mindways Solid phantom with volume of interest in the quality assurance phantom (red circles, left side). A participant's noncontrast-enhanced axial CT (right side) with volume of interest (yellow circles) in the trabecular bone compartment of three vertebrae for bone mineral density measurements. Image courtesy of Radiological Society of North America

News | Cardiac Imaging | July 15, 2020
July 15, 2020 — ...
Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

News | Cardiac Imaging | June 29, 2020
June 29, 2020 — A type of smart magnetic r...
New Multimodality Cardiac Imaging Guidelines for Competitive Athletes Created. ASE SCCT and SCMR recommendations for imaging, screening atheletes.
News | Cardiac Imaging | May 11, 2020
May 11, 2020 – Competitive athletes are a rapidly growing population worldwide.
Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrow

Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrowhead). Retrospectively, denoted lesion could also be found at CT coronary angiography and coronary angiography (arrowheads in b and c, respectively). CT FFR = CT-derived fractional flow reserve, LGE = late gadolinium enhancement. Image courtesy of RSNA, Radiology.

News | Cardiac Imaging | May 04, 2020
May 4, 2020 – A new technique that combines computed tomography (CT) and magnetic resonance imaging MRI can bolster c
An example of a coronary computed tomography angiography (CCTA) exam. The CIAO study looked at patients who have a problem of blood flow limitation and chest pain symptoms in the absence of a 50 percent or more artery narrowing, known as ischemia with no obstructive CAD, or INOCA.

An example of a coronary computed tomography angiography (CCTA) exam. The CIAO study looked at patients who have a problem of blood flow limitation and chest pain symptoms in the absence of a 50 percent or more artery narrowing, known as ischemia with no obstructive CAD, or INOCA.

News | Cardiac Imaging | April 03, 2020
April 3, 2020 — Patients who experience chest pain and have abnormal results on a cardiac stress test but who do not
Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data

Figure 1: Depiction of the fully automated CT biomarkers tools used in this study. (A) Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data. (B) Case example in an asymptomatic 52-year-old man undergoing CT for colorectal cancer screening. At the time of CT screening, he had a body-mass index of 27·3 and Framingham risk score of 5% (low risk). However, several CT-based metabolic markers were indicative of underlying disease. Multivariate Cox model prediction based on these three CT-based results put the risk of cardiovascular event at 19% within 2 years, at 40% within 5 years, and at 67% within 10 years, and the risk of death at 4% within 2 years, 11% within 5 years, and 27% within 10 years. At longitudinal clinical follow-up, the patient suffered an acute myocardial infarction 3 years after this initial CT and died 12 years after CT at the age of 64 years. (C) Contrast-enhanced CT performed 7 months before death for minor trauma was interpreted as negative but does show significant progression of vascular calcification, visceral fat, and hepatic steatosis. HU=Hounsfield units.

News | Cardiac Imaging | March 06, 2020
March 6, 2020 — Researchers at the National Institutes of Health a