News | Cardiac Imaging | May 02, 2016

NIH Creates Atlas of Human Malformation Syndromes in Diverse Populations

Photographic resource will aid diagnosing genomic diseases in patients of non-European ancestry

National Human Genome Research Institute, NHGRI, diagnostic atlas, malformations, populations

Image courtesy of the National Human Genome Research Institute

May 2, 2016 — Researchers with the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, have collaborated with physicians and medical geneticists around the world to create the Atlas of Human Malformation Syndromes in Diverse Populations. Healthcare providers can use the new atlas to diagnose diverse patients with inherited diseases by comparing physical traits (called phenotypes) and written descriptions of their symptoms with photos and descriptions of people with the same condition and ancestry.

Previously, the only available diagnostic atlas featured photos of patients with northern European ancestry, which often does not represent the characteristics of these diseases in patients from other parts of the world. The free electronic atlas was announced online in Genetics in Medicine.

“This atlas is long overdue and much needed,” said Daniel Kastner, M.D., Ph.D., NHGRI scientific director. “The impact of such a resource will be immediate and profound for all healthcare providers who are diagnosing and treating birth defects and genetic diseases in people of diverse ancestry.”

Congenital malformations, also known as birth defects, are the leading cause of infant deaths and diseases worldwide. Examples include heart defects, such as missing or misshaped valves; abnormal limbs, such as a clubfoot; neural tube defects, such as spina bifida; and problems related to the growth and development of the brain and spinal cord. Birth defects can be caused by genes not working properly, missing or extra chromosomes or mothers’ exposure to medications and chemicals during pregnancy.

“The atlas will enable healthcare providers to diagnose patients as early as possible,” said Maximilian Muenke, M.D., atlas co-creator and chief of NHGRI’s Medical Genetics Branch. “Once they have an accurate diagnosis, healthcare providers can provide better care and information for patients and their families.”

The first disorders added to the atlas are Down syndrome and 22q11.2 deletion syndrome. Down syndrome is the most common chromosomal condition, affecting roughly 1 in 1,000 babies worldwide and representing a diagnostic challenge for doctors. A feature of Down syndrome in persons of European descent is the skin fold of the upper eyelid, covering the inner corner of the eye. But these epicanthal eye folds are completely normal in people of Asian descent without Down syndrome, which means they are not a distinguishing characteristic.

The 22q11.2 deletion syndrome, also known as velocardiofacial syndrome, affects 1 in 4,000 newborns and is characterized by a combination of cleft palate, heart defects, differences in the way the kidneys are formed or work, a characteristic facial appearance, learning problems, and speech and feeding problems.

When complete, the atlas will consist of photos of physical traits of people with many different inherited diseases around the world, including Asia, the Indian subcontinent, the Middle East, South America and sub-Saharan Africa. In addition to the photos, the atlas will include written descriptions of affected people and will be searchable by phenotype (a person’s traits), syndrome, continental region of residence and genomic/molecular diagnosis.

The need for the tool became evident after three clinical geneticists from NHGRI — Muenke, Paul Kruszka, M.D., and Adebowale Adeyemo, M.D. — visited children’s heart clinics in Africa. “We found ourselves struggling to diagnose the African children,” Kruszka said. “We were doing our best but we needed reference photos that didn’t exist.”

They were not the only ones with this problem. In Lagos, Nigeria, the three physicians presented sessions on clinical genetics (the practice of medicine focused on genetic disorders) to a standing-room-only audience. Afterward, they had discussions with a long line of doctors, many holding phones with photos of affected children they needed help diagnosing. Over dinner that night, the three cemented a plan to build the atlas.

Over the next year and a half, the group brought together a network of experts from China, India, Mali, the Middle East, Malaysia, Nigeria, Rwanda, South Africa, South America, Thailand and Uganda. From this group, NHGRI formed an advisory board to guide the project, maintain the website and oversee potential ethical issues.

Before posting photos of diverse people affected by genetic diseases, the team requested an ethics consultation from the NHGRI Bioethics Core. Based on this input, healthcare providers sought permission from patients and their caregivers before contributing unpublished photos of affected patients to the atlas. Informed consent is tailored to local communities and translated and administered through the use of local interpreters.

“The job of the ethicist is to shed light on the aspects of the project that might harm the person sharing information, and to think about ways to reduce those risks,” said Sara C. Hull, Ph.D., director of the NHGRI Bioethics Core. “We wanted to weigh carefully those risks in light of the justice-oriented benefits of this important project.”

To ensure the atlas does not make mistaken connections between race, ethnicity and genetic diseases or reinforce stereotypes that were potentially harmful to different groups, healthcare providers are relying on participants’ descriptions of his or her four grandparents’ nationalities and about their ethnic and cultural identity. The photos and descriptive information included in the atlas are organized by disease and by continental ancestry, so a healthcare provider can compare their patient to someone of similar ancestral origin.

Now that the atlas is established, the next step is to inform physician communities — pediatricians, family physicians, internists, cardiologists, neurologists and craniofacial surgeons — about the atlas, said Adeyemo, atlas co-founder and deputy director of the NIH Center for Research on Genomics and Global Health.

“This project was born out of a real need,” Adeyemo said. “The doctors who approached us after our talks in Nigeria, the ones who regularly send us photos of affected children and our clinical colleagues seeing patients in Africa, Asia and South America will now have the help they need to diagnose their patients.”

For more information: www.genome.gov

Related Content

New Policy Decisions Give Millions Access to HeartFlow FFRct Analysis
News | Cardiac Imaging | February 01, 2018
February 1, 2018 – HeartFlow announced that seven new commercial payers issued positive medical policies covering the
Clear detail of the in-stent restenosis can be seen in this image from the new high-resolution Canon Precision CT system. RSNA 2017, #RSNA2017, #RSNA17

Clear detail of the in-stent restenosis can be seen in this image from the new high-resolution Canon Aquilion Precision CT system.

Feature | Cardiac Imaging | January 23, 2018 | Dave Fornell
Medical imaging plays a key role in cardiology, and most of the newest radiology technology advances are first unveil
Philips Introduces Technology Maximizer Program for Imaging Equipment Upgrades
Technology | Cardiac Imaging | January 17, 2018
Philips recently announced the launch of Technology Maximizer, a cross-modality program designed to boost the clinical...
Videos | Cardiac Imaging | December 29, 2017
ITN and DAIC Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies on the
Siemens Healthineers Introduces Share360 Tailored Service Portfolio
News | Cardiac Imaging | November 10, 2017
To address the specific needs of medical imaging clinical engineering departments nationwide, Siemens Healthineers has...
HeartFlow's FFR-CT (FFRct) analysis software can create a virtual FFR to assess coronary artery disease.

HeartFlow's FFR-CT analysis software uses a computed tomography scan and supercomputing fluid dynamics software to create a noninvasive, virtual FFR map of the entire coronary artery tree to determine the flow-limiting severity of ant lesions. 

News | Cardiac Imaging | November 06, 2017
November 6, 2017 – The Centers for Medicare & Medicaid Services (CMS) has finalized a New Technology Ambulatory P
Philips Announces Findings of Patient Experience in Imaging Research
News | Cardiac Imaging | October 24, 2017
Philips recently announced the key findings of its research focused on the patient experience in diagnostic imaging...
ASNC and SNMMI Release Joint Document on Diagnosis, Treatment of Cardiac Sarcoidosis
News | Cardiac Imaging | August 18, 2017
August 18, 2017 — The American Society of...
Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Cardiac Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Videos | Cardiac Imaging | July 18, 2017
Leslee Shaw, Ph.D., director of clinical research and professor of medicine at Emory University, Atlanta, and past-pr
Overlay Init