News | AHA | November 08, 2022

Novel Gene-Editing Therapy Shows Promise For Patients With Transthyretin Amyloid Cardiomyopathy

In a clinical trial, a single intravenous infusion of NTLA-2001, a novel gene-editing therapy based on CRISPR/Cas9, significantly reduced abnormal levels of the protein transthyretin in patients with ATTR amyloid cardiomyopathy, a progressive and fatal cause of heart failure 

Julian D. Gillmore, M.D., Ph.D., Professor, University College London Centre for Amyloidosis, United Kingdom, image copyright University College London Centre for Amyloidosis

Julian D. Gillmore, M.D., Ph.D., Professor, University College London Centre for Amyloidosis, United Kingdom, image copyright University College London Centre for Amyloidosis 

 


November 8, 2022 — A single IV infusion of NTLA-2001, a novel CRISPR/Cas9-based gene editing therapy, significantly reduced circulating transthyretin (TTR) protein levels in patients with ATTR amyloid cardiomyopathy, a progressive and fatal cause of heart failure, according to late-breaking research presented today at the American Heart Association’s Scientific Sessions 2022. The meeting, held in person in Chicago and virtually, Nov. 5-7, 2022, is a premier global exchange of the latest scientific advancements, research and evidence-based clinical practice updates in cardiovascular science. 

Transthyretin is a protein that is produced by the liver and transports retinol, also known as vitamin A, and the thyroid hormone thyroxine in circulation through the body. Transthyretin amyloidosis (ATTR) is caused by accumulation of fibrils composed of misfolded transthyretin protein in organs including the heart. The fibrils disrupt normal organ function and lead to progressive organ failure. 

“Despite the availability of TTR protein stabilizers as a treatment option for people with ATTR amyloidosis, it remains a progressive and universally fatal disease,” said lead study author Julian D. Gillmore, M.D., Ph.D., a professor at the University College London Centre for Amyloidosis in the U.K. “Recently, clinical trials investigating therapy with gene-silencing agents targeting mRNA have found that lowering TTR protein levels results in cardiac benefits.” 

Researchers evaluated the safety, tolerability and efficacy of NTLA-2001, which precisely knocks out the TTR gene in the liver of people with ATTR amyloid cardiomyopathy. A single IV dose of NTLA-2001 is designed to minimize production of the abnormal TTR proteins. 

The study included 12 participants with ATTR amyloidosis and varying levels of heart failure requiring treatment. Patients received a single infusion of NTLA-2001. Levels of TTR protein concentration in the bloodstream were measured at the beginning of the study and also at periodic intervals - two, four and six months - after the single intravenous NTLA-2001 dose. 

The results found that circulating serum TTR proteins were rapidly and profoundly reduced by at least 90% in all patients 28 days after administration of a single intravenous dose of NTLA-2001. These benefits were sustained through to the last study visit conducted between four and six months after receiving the therapeutic infusion. In addition, NTLA-2001 was generally well-tolerated (meaning that there was only one serious adverse event, which resolved), and the majority of adverse events, such as infusion-related reactions, were mild. 

The primary limitation to interpretation of this study is that it is an original, Phase 1 dose escalation study in patients with ATTR amyloid cardiomyopathy, Gillmore said. 

“This is the first-ever human trial of gene editing in vivo, or in the body, and our study proves that gene editing in the human body is possible and also safe in the short term. We were impressed by the significant and consistent reductions in patients’ serum TTR protein levels,” Gillmore said.  “These results indicate that IV NTLA-2001 is a potential new treatment option that may stop disease progression in patients with ATTR amyloid cardiomyopathy or even bring about improvement. However, further research is needed to establish long-term safety of NTLA-2001 and to continue to monitor and evaluate the potential effects of markedly reduced TTR levels on patients’ clinical outcomes.” 

For more information: www.heart.org 

 

More related content on AHA22 


Related Content

News | Heart Failure

December 2, 2022 — Westchester resident, 62-year-old Miriam Nieves, is especially grateful this Thanksgiving season ...

Home December 02, 2022
Home
News | Heart Failure

December 2, 2022 — The U.S. Senate today passed the bipartisan Cardiovascular Advances in Research and Opportunities ...

Home December 02, 2022
Home
News | Heart Failure

December 1, 2022 — Scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have identified a new ...

Home December 01, 2022
Home
News | Heart Failure

November 22, 2022 — Impulse Dynamics, a global medical device company dedicated to improving the lives of people with ...

Home November 22, 2022
Home
News | Heart Failure

November 21, 2022 — Cardiovascular disease remains the leading cause of death in the United States (US) and worldwide ...

Home November 21, 2022
Home
News | Heart Failure

November 22, 2022 — Myocarditis is a complication that can occur in cancer patients treated with immune checkpoint ...

Home November 21, 2022
Home
News | Heart Failure

November 15, 2022 — Ten months after transplanting the first genetically-modified pig heart into a human patient ...

Home November 15, 2022
Home
News | Heart Failure

November 14, 2022 — When it comes to heart failure (HF), sex differencesare known to impact everything from risk factors ...

Home November 14, 2022
Home
News | Heart Failure

November 9, 2022 — Lexicon Pharmaceuticals, Inc. announced that a new analysis of results from the SOLOIST-WHF Phase 3 ...

Home November 09, 2022
Home
News | Heart Failure

November 3, 2022 — Chronic heart failure causes the cell’s powerhouses to dysfunction, in part due to overconsumption of ...

Home November 03, 2022
Home
Subscribe Now