Feature | Heart Failure | June 24, 2015

Fibrin and Stem Cell Patches Show Promise for Heart Healing

Patch filled with human umbilical cord blood cells offers better delivery system to injury site

fibrin, MSCs, stem cells, heart failure, Antoni Bayes-Genis, umbilical cord

June 24, 2015 - To date, the only definitive treatment for heart failure – an organ transplant – is hampered by both the limited number of organ donors and the potential for the patient's body to reject the new heart. However, findings of a study published in STEM CELLS: Translational Medicine demonstrate the promise in regenerating cardiac tissue using engineered patches made up of a mixture of fibrin and mesenchymal stem cells (MSCs) derived from human umbilical cord blood.
 
Previous studies show the potential of MSCs to repair damage left by a heart attack, but in these instances, the cells were delivered through injections or intravenously. "While feasible and safe, the treatments exhibited only modest benefits," said Antoni Bayes-Genis, M.D., Ph.D., member of the ICREC (Heart Failure and Cardiac Regeneration) Research Program, Germans Trias i Pujol Health Science Research Institute (IGTP) and professor at Universitat Auto`noma de Barcelona. Bayes-Genis is a lead investigator on this study.
 
"The survival rate of the implanted stem cells was generally low and about 90 percent of them either died or migrated away from the implantation site, generally to the liver," added the study's first author, Santiago Roura, Ph.D., also a member of the ICREC Research Program and IGTP. "These limited effects are probably due to the adverse mechanical stress and hypoxic conditions present in the myocardium after the heart attack."

Could finding a better way to deliver the MSCs to the injured site yield more efficient results? Researchers think it's a possibility. Scaffolds (or patches) in which the cells are combined with biological and synthetic materials that can also be supplemented with growth/differentiation factors to generate bioimplants, have emerged as a promising candidate. However, none of the current materials being tested for the patches, whether synthetic or natural, have demonstrated optimal properties for cardiac tissue repair.
 
That led Bayes-Genis and his colleagues to investigate how a fibrin patch filled with human umbilical cord blood-derived MSCs might work. Fibrin is already widely used in medical applications due to its ability to act as a biocompatible glue, holding cells in place and stimulating angiogenesis. In turn, they surmised that it might offer a nurturing environment for the MSCs' proliferation while also keeping them at the site of the injury where they were needed for repairing the heart tissue.
 
The team mixed MSCs and fibrin to form the patches and then administered them in a group of mice that had undergone heart attacks. Three weeks later, they compared the animals' recovery to a control group of mice treated with fibrin alone (no stem cells) and another control group that received no treatment at all. The results showed that the patches adhered well to the hearts and the MSCs demonstrated early proliferation and differentiation. The patch cells also participated in the formation of new, functional blood vessels that connected the patch to both the heart tissue directly beneath it and the mouse's circulatory system, too.
 
"As a result, the heart function in this group of mice was better than that of the animals in either of the other control groups," Bayes-Genis said. "Thus, this study provides promising findings for the use of umbilical cord-blood MSCs and fibrin patches in cardiac repair."

 

For more information: www.stemcellstm.com

Related Content

Diabetes Drug May Reverse Heart Failure
News | Heart Failure | April 19, 2019
Researchers at the Icahn School of Medicine at Mount Sinai have demonstrated that the recently developed antidiabetic...
Diabetes Drug Effective Against Heart Failure in Wide Spectrum of Patients
News | Heart Failure | March 29, 2019
The cardiovascular benefits of the diabetes drug dapagliflozin extend across a wide spectrum of patients and are...
New data from a four-week extension of the landmark PIONEER-HF Trial showed the drug sacubitril/valsartan (Entresto) continued to deliver reductions in the heart failure biomarker N-terminal pro–B-type natriuretic peptide (NT-proBNP), an established biomarker for heart failure severity and prognosis.[1] The data was presented as a late-breaker at the American College of Cardiology (ACC) 2019 Annual Scientific Session in March.
News | Heart Failure | March 27, 2019
March 27, 2019 —New data from a four-week extension of the landmark PIONEER-HF Trial showed the drug sacubitril/valsa
Toilet Seat Detects Congestive Heart Failure

Nicholas Conn, a postdoctoral fellow at RIT and founder and CEO of Heart Health Intelligence, is part of the university team that has developed a toilet-seat based cardiovascular monitoring system. Image courtesy of A. Sue Weisler/RIT.

News | Heart Failure | March 26, 2019
March 26, 2019 — A toilet seat-based ...
FDA Approves Optimizer Smart System for Heart Failure Patients offers cardiac contractility modulation.
Technology | Heart Failure | March 21, 2019
The U.S. Food and Drug Administration (FDA) approved Impulse Dynamics’ Optimizer Smart system for treating patients...
William T. Abraham, M.D., Joins V-Wave as Chief Medical Officer

William T. Abraham, M.D., in an interview with DAIC Editor Dave Fornell at TCT 2016.

News | Heart Failure | March 12, 2019
V-Wave Ltd. announced that renowned heart failure cardiologist William T. Abraham, M.D., is joining V-Wave as chief...
EMPRISE Study Shows Empagliflozin Reduces Heart Failure Hospitalization with new data presented at AHA 2018. #AHA18 #AHA2018
News | Heart Failure | November 07, 2018
November 6, 2018 – Initial results from the real-world EMPagliflozin compaRative effectIveness and SafEty (EMPRISE) s
Overlay Init