Feature | June 10, 2014

Opti-SPECT/PET/CT: Five Different Imaging Systems Now Combined

Wide range of molecular imaging modalities is at researchers’ fingertips with a hybrid device dedicated for early-stage clinical trials

June 10, 2014 – Taking their pick, biomedical researchers can now conduct five different imaging studies in one scan with a state-of-the-art preclinical molecular imaging system that scientists unveiled during the Society of Nuclear Medicine and Molecular Imaging’s 2014 Annual Meeting.

The imaging device allows single photon emission tomography (SPECT), positron emission tomography (PET), X-ray computed tomography (CT), fluorescence and bioluminescence imaging — powerful imaging techniques that provide different information about anatomy and physiological processes happening within the body. With the Opti-SPECT/PET/CT system, SPECT or PET information details drug distribution and improves interpretation of optical data, while bioluminescence and fluorescence characterize additional tumor properties.  The tracers that are developed with the system will be used as a surgical guide for clinicians.

“We need to know as much as possible from our enemy: the tumor,” Frederik Beekman, Ph.D., explained.  Beekman is head of radiation technology and medical imaging and a professor at Delft University of Technology in Delft, The Netherlands. “This research proves that we can now obtain comprehensive data from five medical imaging systems in a single scan. It is minimally invasive and requires only a single dose of anesthesia.”

Opti-SPECT/PET/CT is built on a small scale for preclinical studies and allows scientists to use a gamut of imaging methods including high resolution nuclear medicine (SPECT and PET), radiological (CT) and optical imaging (fluorescence and bioluminescence). This means that information about organ function, structure and real-time physiological signals revealed within the light spectrum are all available in a synergistic fusion of advanced medical imaging. The hybrid system includes high-performance cameras and an on-board dark room. The molecular imaging platform could be used for new drug discovery, especially for imaging agents that could be used intraoperatively for patients undergoing cancer surgery.

To test the device, researchers imaged models and then mice in multiple studies using a fluorescent dye optical agent and a nuclear medicine imaging agent that combines a radioactive particle with a chemical drug compound. The agent is injected and then imaged as it homes in on and interacts with specific bodily functions. In this case, that function is angiogenesis, or the development of new blood vessels, which often proliferate as a tumor grows. Results of the study confirmed the imaging system’s functionality and proved that it was comparable to other add-on imaging platforms for preclinical studies.

For more information: www.snmmi.org

Related Content

SCCT Announces 2019 Gold Medal Award Recipients

Jonathon Leipsic, M.D., (left) and Gilbert Raff, M.D., (right)

News | Computed Tomography (CT) | June 05, 2019
The Society of Cardiovascular Computed Tomography (SCCT) will present the 2019 Gold Medal Award to Jonathon Leipsic, M....
Johns Hopkins Medicine First in U.S. to Install Canon Medical's Aquilion Precision
News | Computed Tomography (CT) | March 26, 2019
Johns Hopkins Medicine now has access to the first Ultra-High Resolution computed tomography (UHR CT) system for...
Siemens Healthineers Debuts Cardiovascular Edition of Somatom go.Top CT
News | Computed Tomography (CT) | March 14, 2019
Siemens Healthineers will introduce the Somatom go.Top Cardiovascular Edition, a new version of its established...
Canon Medical Introduces Deep Learning-Based CT Image Reconstruction
News | Computed Tomography (CT) | February 27, 2019
Canon Medical Systems recently introduced AiCE (Advanced intelligent Clear IQ Engine), a deep convolutional neural...
SCCT Releases New Guideline for CT Use During TAVR
News | Computed Tomography (CT) | January 08, 2019
The Society of Cardiovascular Computed Tomography (SCCT) has released a new expert consensus document for computed...
A CT calcium scoring image showing calcified plaques in coronary vessel segments. The higher the calcium content of the vessels, the high risk the patient is for a heart attack event. CAC exam

A CT calcium scoring image showing calcified plaques in coronary vessel segments. The higher the calcium content of the vessels, the higher risk the patient is for a heart attack event. Image courtesy of Canon Medical Systems.

Feature | Computed Tomography (CT) | October 17, 2018 | Dave Fornell, Editor
A picture is worth a thousand words, and to patients concerned about their health, detailed images of the coronary an
Abdominal Aortic Calcification May Signal Future Heart Attack

Image from computed tomography (CT) colonography shows segmented abdominal aortic calcification measured with semiautomated CT tool on coronal image. Within region of interest over aorta selected by user, tool automatically segments and quantifies aortic calcification (shown in blue). 

Image Credit: O’Connor S D, Graffy P M, Zea R, et al. Does nonenhanced CT-based quantification of abdominal aortic calcification outperform the Framingham Risk Score in predicting cardiovascular event sin asymptomatic adults? Radiology doi: 10.1148/radiol.2018180562. Published online Oct. 2, 2018. © RSNA.

News | Computed Tomography (CT) | October 12, 2018
Computed tomography (CT)-based measures of calcification in the abdominal aorta are strong predictors of heart attacks...
Siemens Healthineers Announces First U.S. Install of Somatom go.Top CT
News | Computed Tomography (CT) | September 17, 2018
September 17, 2018 — The Ohio State University Wexner Medical Center in Columbus recently became the first healthcare
Overlay Init