Feature | February 06, 2014| Dave Fornell

Sapien Aortic Valve Used to Replace Mitral Valve

Henry Ford Hospital in Detroit uses an Edwards Sapien device to replace a mitral valve

Edwards Lifesciences Sapien Transcatheter Aortic Valve Heart Repair Structural
There have been big advances in transcatheter aortic valve replacement (TAVR) technology in recent years and now two such valves on the U.S. market, but there has been little progress toward a transcatheter mitral valve. The U.S. Food and Drug Administration (FDA) cleared the Mitraclip mitral valve leaflet repair system last fall, but for patients requiring a full valve replacement, there is no FDA cleared option. Due to the complexity of the mitral valve anatomy, development of transcatheter treatments for mitral regurgitation has been lacking in comparison to transcatheter aortic valve devices.
 
This did not stop cardiologists at Henry Ford Hospital in Detroit, who recently used an Edwards Lifesciences Sapien TAVR device to replace a mitral valve that was narrowed with calcium buildup. William O'Neill, M.D., medical director of the Center for Structural Heart Disease at Henry Ford Hospital, estimates this new technique could help thousands of patients a year in the United States.
 
"The success of this innovative procedure, developed by my team member Dr. Mayra Guerrero, brings new options to physicians for mitral valve repair," O'Neill said in a statement. "Not only did our team implant a different replacement valve than would normally be used in this part of the heart, but we needed to develop a new technique to do it. We were able to implant a different valve, as it was the only way to save the patient."
 
An FDA-approved trial is being planned at Henry Ford Hospital to further investigate the use of the Sapien valve in the mitral valve position. 
 
The patient, Lee Young, 72, of Detroit, has diabetes and had two previous open-heart surgeries. With calcific mitral stenosis, the narrowed mitral valve of his heart was causing shortness of breath, but he was not a candidate for a third open-heart surgery, so the heart team devised a procedure using a Sapien valve.
 
The team of specialists modified the route that is usually used for mitral valvuloplasty, a balloon procedure to open narrowed heart valves. The procedure had been attempted on Young, with little success at opening the mitral valve sufficiently. However, the balloon allowed the team to measure the valve annulus to ensure that the new valve would fit before placement.  
 
The route involves threading a catheter from the femoral vein, passing through the right ventricle, into the right atrium and through the septum into the left atrium. The balloon expandable Sapien valve is delivered through the catheter to the mitral valve. A minimally invasive incision allowed a wire to pass through the chest to the mitral valve, providing stability during the placement of the new valve. 
 
Young has been feeling well for the six weeks following his procedure.
 
Similar Sapien procedures to replace the mitral valve have been performed in Europe since 2011.[1] 
 
European Market Clearance for the Mitral Position

The next generation Edwards Lifesciences Sapien XT is already cleared in Europe for TAVR and for use in the mitral valve. In Febrary 2014, the Sapien XT received an additional European market clearance for use in valve-in-valve procedures, where one device can be implanted over on top of another implanted valve, in both the aortic and mitral valve positions. 

In the United States, the Sapien XT valve is not commercially available and is an investigational device being studied as part of the randomized, pivotal PARTNER II Trial. The device is an improved version of Sapien valve.  

Dedicated Mitral Valve

Canadian-based Neovasc has developed the Tiara device, a dedicated mitral valve replacement device using a self-expanding frame with attached bovine pericardial tissue leaflets mounted inside, similar to a Medtronic CoreValve device. It is delivered through the apex of the heart. 

The first-in-human implantation of the Tiara was successfully performed in January at St. Paul’s Hospital in Vancouver. The transapical procedure eliminated mitral regurgitation and significantly improved the patient's heart function without the need for cardiac bypass support or significant paravalvular leak or procedural complications. 

The device showed further promise based on preclinical swine study published in the February 2014 issue of JACC: Cardiovascular Interventions. The valves were successfully implanted in 81 percent of the swine (n=29). Unsuccessful implantation was due to improper positioning (n=3), failure of the valve anchors to properly engage during deployment (n=2), and ventricular fibrillation (n=2). None of the valves migrated or embolized. The animals with successful implantations all remained hemodynamically stable throughout the procedure. The authors noted some atrial fibrillation when the valve was being manipulated, but there were no sustained arrhythmias after implantation. Major paravalvular leak was seen only in animals with a improperly sized valves. 

Another company, CardiAQ Valve Technologies, is also developing a dedicated transcatheter mitral valve.  Its design uses a foreshortening frame designed to address the specific challenges of the mitral anatomy, and includes numerous proximal and distal anchors connected to the frame. Radial expansion of the frame causes the ends of the anchors on both ends to draw closer together.

The CardiAQ access route is transvenous, transseptal and antegrade. The first in human implant took place in 2012 when it was successfully implanted as a compassionate treatment into an 86-year-old male at The Heart Centre, Rigshospitalet University Hospital, Copenhagen, Denmark.  
 
Reference:
1. D. Himbert, E. Brochet,, C. Radu, et al. “Transseptal Implantation of a Transcatheter Heart Valve in a Mitral Annuloplasty Ring to Treat Mitral Repair Failure.” Circ Cardiovasc Interv. 2011;4:396-398, doi:10.1161/CIRCINTERVENTIONS.111.962332. Published online 
 

 

Related Content

Henry Ford Hospital First in Michigan to Perform Cardioband Mitral Valve Procedure

An angiography image showing the catheter-based implantation of the Cardioband annuloplasty ring using corkscrew shaped anchors.

News | Heart Valve Technology | June 13, 2018
Henry Ford Hospital is one of 17 U.S. trial sites using a catheter-based procedure approved in Europe to repair a leaky...
Abbott Portico transcatheter aortic valve replacement (TAVR) performed well PORTICO I real-world study. #EuroPCR
News | Heart Valve Technology | June 01, 2018
June 1, 2018 –  Use of the Abbott Portico transcatheter aortic valve replacement (TAVR) therapy was associated with e
Tendyne Transcatheter Mitral Valve Replacement Device Demonstrates Positive 30-Day Outcomes
News | Heart Valve Technology | May 25, 2018
Abbott announced favorable outcomes from the first 100 patients treated in a global study of its Tendyne Transcatheter...
A 3-D printed aortic root with an simulated implant of an Edwards Sapien TAVR valve. New clinical data points to length-of-stay as a new predictor of outcomes in TAVR patients. Image from Henry Ford Hospital.

A 3-D printed aortic root with an simulated implant of an Edwards Sapien TAVR valve. New clinical data points to length-of-stay as a new predictor of outcomes in TAVR patients. Image from Henry Ford Hospital. 

Feature | Heart Valve Technology | May 14, 2018
May 14, 2018 – A new study finds patients who stay in the hospital for more than 72 hours when undergoing trans-femor
The use of 3-D printed hearts from patients' pre-TAVR planning CT scans have improved outcomes of procedures at the University of Minnesota. Clearly identifying where calcium is located on the valves prior to TAVR device implantation has helped reduce the incidence of paravalvular leak.  #SCAI, #SCAI2018

The use of 3-D printed hearts from patients' pre-TAVR planning CT scans have improved outcomes of procedures at the University of Minnesota. Clearly identifying where calcium is located on the valves prior to TAVR device implantation has helped reduce the incidence of paravalvular leak.

News | Heart Valve Technology | May 14, 2018
May 14, 2018 – A new study examines the effectiveness of 3-D printing technology and computer modeling to predict par
First-Ever Risk Tool Helps Predict TAVR Readmission Rates in 2018 SCAI late-breaking study. #SCAI, #SCAI2018
News | Heart Valve Technology | May 11, 2018
A new study looked at the effectiveness of a novel risk tool to predict 30-day readmission rates in patients undergoing...
Medtronic Shares Two-Year Harmony Transcatheter Pulmonary Valve Results at SCAI 2018. #SCAI, #SCAI2018
News | Heart Valve Technology | May 11, 2018
Medtronic plc announced two-year outcomes for the Harmony Transcatheter Pulmonary Valve (TPV) from its early...
Colibri Heart Valve Continues Enrollment in TAVI Early Feasibility Study
News | Heart Valve Technology | May 07, 2018
Colibri Heart Valve LLC announced the Colibri transcatheter aortic valve implantation (TAVI) System has been used on an...
An 3D echo view of a Neovasc Tiara transcatheter mitral valve. This valve is currently in clinical trials and is ahead of most of the TMVR devices in development.

A 3-D echo view of a Neovasc Tiara transcatheter mitral valve. This valve is currently in clinical trials and is ahead of most of the TMVR devices in development.

Feature | Heart Valve Technology | May 04, 2018 | Dave Fornell, Editor
May 4, 2018 — Transcatheter val...
Edwards Granted CE Mark For First Transcatheter Tricuspid Therapy - Cardioband Tricuspid Valve Reconstruction System
News | Heart Valve Technology | May 01, 2018
Edwards Lifesciences Corp.announced that it received CE Mark for the Edwards Cardioband Tricuspid Valve Reconstruction...
Overlay Init