News | Artificial Intelligence | November 27, 2018

AI Predicts Cardiovascular Disease Risk From CT Scans

Algorithms from Zebra Medical Vision successful in retrospectively predicting cardiovascular disease

AI Predicts Cardiovascular Disease Risk From CT Scans

November 27, 2018 – Zebra Medical Vision and Clalit Health Services announced the completion of a research project that allows early identification of patients with cardiovascular disease. Using existing computed tomography (CT) data, Zebra-Med’s artificial intelligence (AI) algorithms allow Clalit to identify patients at risk of cardiac events. The project was independently validated by the Clalit Research Institute and was presented for the first time during the 2018 Radiological Society of North America (RSNA) annual meeting, Nov. 25-30 in Chicago.  

Clalit owns and operates 1,500 primary care clinics and 14 hospitals, including 30 percent of Israel’s hospital acute care beds, treating over 4 million patients.

A five-year retrospective cohort study of 14,135 patients with non-gated, unenhanced chest CT was used to examine the cardiovascular predictive power of Zebra-Med’s automatic coronary calcium scoring (CCS) algorithm. Prediction performance results were compared between the American Heart Association (AHA) 2013 predictive model (base model) and the same model with the Zebra-Med CCS inserted as an additional predictor (augmented model). The addition of Zebra-Med’s CCS improved sensitivity and specificity of the contemporary gold-standard AHA model, resulting in a net 4.5 percent categorical risk-reclassification improvement. The results indicate that by including a coronary calcium score derived by analyzing non-gated CT scans with Zebra-med’s algorithms, significant improvements in risk classification are achieved.  

According to the AHA, In 2016, cardiovascular disease (CVD) cost America $555 billion. By 2035, the cost will skyrocket to $1.1 trillion and by 2035, nearly half of the U.S. population will have some form of cardiovascular disease. Therefore, this research finding can help individuals and clinicians become aware of the risk stratification category for coronary vascular events in the next 10 years. This insight may lead to more tailored and preventative therapy.

For more information: www.zebra-med.com

Related Content

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

News | Artificial Intelligence | May 26, 2020
May 26, 2020 — DiA Imaging Analysis, a provider of AI based ultrasound analysis solutions, said it received a governm
A list of all the abnormalities the AI model classifies. This illustration only shows three representative leads (DII, V1 and V6).Fig. This is Figure 1 from the Nature Communications article.

A list of all the abnormalities the AI model classifies. This illustration only shows three representative leads (DII, V1 and V6).Fig. This is Figure 1 from the Nature Communications article.

News | Artificial Intelligence | May 19, 2020
May 19, 2020 — Artificial inte...
TeraRecon will accelerate innovation in its advanced visualization and AI platforms for image-related decision support to clinical specialists

TeraRecon's End-to-End AI Ecosystem

News | Artificial Intelligence | March 04, 2020
March 4, 2020 — SymphonyAI Group, an operating group of lea
The FDA granted marketing authorization of the Caption Guidance software to Caption Health Inc. in February 2020. It uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

The Caption Guidance software uses artificial intelligence to guide users to get optimal cardiac ultrasound images in a point of care ultrasound (POCUS) setting.

News | Artificial Intelligence | February 13, 2020
February 13, 2020 — The U.S.

GE Healthcare partnered with the AI developer Dia to provide an artificial intelligence algorithm to auto contour and calculate cardiac ejection fraction (EF). The app is now available on the GE Vscan pocket, point-of-care ultrasound (POCUS) system, as seen here displayed at RSNA 2019. Watch a VIDEO demo from RSNA.

Feature | Artificial Intelligence | February 11, 2020 | Sanjay Parekh, Ph.D. 
February 7, 2020 – At the 2019 Radiological Society...
A new technology for detecting low glucose levels via electrocardiogram (ECG) using a non-invasive wearable sensor, which with the latest artificial intelligence (AI) can detect hypoglycemic events from raw ECG signals has been made by researchers from the University of Warwick.

A new technology for detecting low glucose levels via electrocardiogram (ECG) using a non-invasive wearable sensor, which with the latest artificial intelligence (AI) can detect hypoglycemic events from raw ECG signals has been made by researchers from the University of Warwick.

 

News | Artificial Intelligence | January 13, 2020
A new technology for detecting low glucose levels via electrocardiogram (ECG) using a non-invasive wearable sensor,...
Videos | Artificial Intelligence | November 07, 2019
Piotr Slomka explains how his team at Cedars-Sinai is working on intelligent patient risk prediction algorithms...
AI Could Use EKG Data to Measure Patient's Overall Health Status

Image courtesy of iStock

News | Artificial Intelligence | August 29, 2019
In the near future, doctors may be able to apply artificial intelligence (AI) to electrocardiogram data in order to...
Half of Hospital Decision Makers Plan to Invest in AI by 2021
News | Artificial Intelligence | August 08, 2019
A recent study conducted by Olive AI explores how hospital leaders are responding to the imperative to drive efficiency...