News | Pacemakers | March 29, 2019

Artificial Intelligence Can Improve Emergency X-ray Identification of Pacemakers

New algorithm identifies manufacturer of pacemaker with 99 percent accuracy, compared to 72 percent for traditional methods

Artificial Intelligence Can Improve Emergency X-ray Identification of Pacemakers

March 29, 2019 — A research team from Imperial College London believes a new software could speed up the diagnosis and treatment of patients with faulty cardiac rhythm devices in an emergency setting. The software has been able to identify the make and model of different devices, such as pacemakers and defibrillators, within seconds.

The study, published in JACC: Clinical Electrophysiology,1 took place at Hammersmith Hospital, part of Imperial College Healthcare NHS Trust.

James Howard, Ph.D., clinical research fellow at Imperial College London and lead author of the study, said: "Pacemakers and defibrillators have improved the lives of millions of patients from around the world. However, in some rare cases these devices can fail and patients can deteriorate as a result. In these situations, clinicians must quickly identify the type of device a patient has so they can provide treatment such as changing the device's settings or replacing the leads. Unfortunately, current methods are slow and out-dated, and there is a real need to find new and improved ways of identifying devices during emergency settings. Our new software could be a solution, as it can identify devices accurately and instantly. This could help clinicians make the best decisions for treating patients."

More than 1 million people around the world undergo implantation of a cardiac rhythm device each year, with over 50,000 being implanted per year in the U.K. These devices are placed under the patients' skin to either help the heart's electrical system function properly or measure heart rhythm. Pacemakers treat slow heart rhythms by 'pacing' the heart to beat faster, while defibrillators treat fast heart rhythms by delivering electric shocks to reset the heartbeat back to a normal rhythm.

However, in some rare cases these devices can lose their ability to control the heartbeat, either because the device malfunctions or the wires connecting it to the heart move out of the correct position. When this happens, patients may experience palpitations, loss of consciousness or inappropriate electric shocks.

In these situations, clinicians need to determine the model of a device to investigate why it has failed. Unless they have access to the records where implantation took place, or the patient can tell them, staff must use a flowchart algorithm to identify pacemakers by a process of elimination. The flowchart contains a series of shapes and circuit board components of different pacemakers designed to help clinicians identify the make and model of a patient's pacemaker. Not only is this time-consuming, but these flow charts are now outdated and therefore inaccurate. This can result in delays to delivering care to patients, who are often in critical conditions.

In the new study, researchers trained the software program called a neural network to identify more than 1,600 different cardiac devices from patients.

To use the neural network, the clinician uploads the X-ray image containing the device into a computer and the software reads the image to give a result on the make and model of the device within seconds.

The team used the program to see if it could identify the devices from radiographic images of more than 1,500 patients at Hammersmith Hospital between 1998 and 2018. They then compared the results with five cardiologists who used the current flowchart algorithm to identify the devices.

The team found that the software outperformed current methods. It was 99 percent accurate in identifying the manufacturer of a device, compared with only 72 percent accuracy for the flow chart. The team suggests the software could greatly speed up the care of patients with heart rhythm device problems.

The researchers will aim to carry out a further trial to validate the results in a larger group of patients and investigate ways to create a more portable device that can be used on hospital wards.

For more information: www.electrophysiology.onlinejacc.org

Reference

1. Howard J.P., Fisher L., Shun-Shin M.J., et al. Cardiac Rhythm Device Identification Using Neural Networks. JACC: Clinical Electrophysiology, March 27, 2019. https://doi.org/10.1016/j.jacep.2019.02.003

Related Content

vRad Presents AI Model to Assess Probability of Aortic Dissection
News | Artificial Intelligence | July 01, 2019
vRad (Virtual Radiologic), a Mednax company recently made a scientific presentation, “Screening for Aortic Dissection...
Videos | Artificial Intelligence | June 28, 2019
This is a quick example of how artificial intelligence (AI) is being integrated on the back end of cardiac ultrasound
Third FDA Clearance Announced for Zebra-Med's AI Solution for Brain Bleed Alerts
Technology | Artificial Intelligence | June 19, 2019
Zebra Medical Vision announced it has received its third U.S. Food and Drug Administration (FDA) 510(k) clearance for...
FDA Clears Aidoc's AI Solution for Flagging Pulmonary Embolism
Technology | Artificial Intelligence | May 15, 2019
Artificial intelligence (AI) solutions provider Aidoc has been granted U.S. Food and Drug Administration (FDA)...
Basic artificial intelligence is already incorporated into several premium echocardiography systems. This example is from the Philips Epiq, which can take 3-D datasets and the AI automatically identifies and segments the cardiac anatomy. It then extracts the best images for each of the standard views for an echocardiogram to eliminate variation between operators. The next generation echo AI software will pull in data from the electronic medical records and imaging data to offer suggested diagnoses.

Basic artificial intelligence is already incorporated into several premium echocardiography systems. This example is from the Philips Epiq, where the AI takes 3-D datasets and automatically identifies and segments the cardiac anatomy. It then extracts the best images for each of the standard echocardiogram views to eliminate variation between operators. The next generation echo AI software will pull in data from the electronic medical records and imaging data to offer suggested diagnoses.

Feature | Artificial Intelligence | May 07, 2019 | Ross Upton
Artificial Intelligence has a multitude of impacts on our daily lives, from recommending movies based upon your Netfl
Overlay Init