News | Heart Failure | February 07, 2017

Cancer Drug Could Double as a Weapon Against Heart Disease

UTSW researchers discover drug unexpectedly promotes regeneration of damaged heart tissue

UTSW, new cancer drug, heart failure, tissue repair

February 7, 2017 — A new anticancer agent in development promotes regeneration of damaged heart muscle — an unexpected research finding that may help prevent congestive heart failure in the future.

Many parts of the body, such as blood cells and the lining of the gut, continuously renew throughout life. Others, such as the heart, do not. Because of the heart’s inability to repair itself, damage caused by a heart attack causes permanent scarring that frequently results in heart failure.

For years, Lawrence Lum, Ph.D., associate professor of cell biology at University of Texas (UT) Southwestern Medical Center, has worked to develop a cancer drug targeting Wnt signaling molecules. These molecules are crucial for tissue regeneration, but also frequently contribute to cancer. Essential to the production of Wnt proteins in humans is the porcupine (Porcn) enzyme, so-named because fruit fly embryos lacking this gene resemble a porcupine. In testing the porcupine inhibitor researchers developed, they noted a curiosity.

“We saw many predictable adverse effects — in bone and hair, for example — but one surprise was that the number of dividing cardiomyocytes was slightly increased,” said Lum, senior author of the paper, and a member of UTSW’s Hamon Center for Regenerative Science and Medicine. “In addition to the intense interest in porcupine inhibitors as anticancer agents, this research shows that such agents could be useful in regenerative medicine.”

Based on their initial results, the researchers induced heart attacks in mice and then treated them with a porcupine inhibitor. Their hearts’ ability to pump blood improved by nearly twofold compared to untreated animals.

The study findings were published online in Proceedings of the National Academy of Sciences.

“Our lab has been studying heart repair for several years, and it was striking to see that administration of a Wnt inhibitor significantly improved heart function following a heart attack in mice,” said Rhonda Bassel-Duby, Ph.D., professor of molecular biology and associate director of the Hamon Center.

Importantly, in addition to the improved pumping ability of hearts in the mice, the researchers noticed a reduction in fibrosis, or scarring in the hearts. Collagen-laden scarring that occurs following a heart attack can cause the heart to inappropriately increase in size, and lead to heart failure.

“While fibrotic responses may be immediately beneficial, they can overwhelm the ability of the heart to regenerate in the long run. We think we have an agent that can temper this fibrotic response, thus improving wound healing of the heart,” said Lum, a Virginia Murchison Linthicum Scholar in Medical Research and associate director of basic research at the Harold C. Simmons Comprehensive Cancer Center.

Additionally, Lum said, preliminary experiments indicate that the porcupine inhibitor would only need to be used for a short time following a heart attack, suggesting that the unpleasant side effects typically caused by cancer drugs might be avoided.

“We hope to advance a Porcn inhibitor into clinical testing as a regenerative agent for heart disease within the next year,” Lum said.

For more information: www.pnas.org

References

Moon, J., Zhou, H., Zhang, L., Tan, W., et al. "Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist," Proceedings of the National Academy of Sciences. Published online Jan. 31, 2017. doi:10.1073/pnas.1621346114


Related Content

News | Heart Failure

April 16, 2024 — Each year more than 500,000 Americans undergo percutaneous coronary intervention, or PCI, a minimally ...

Home April 16, 2024
Home
News | Heart Failure

April 12, 2024 — University of Virginia School of Medicine researchers have discovered a gene on the Y chromosome that ...

Home April 12, 2024
Home
News | Heart Failure

April 2, 2024 — People who use e-cigarettes are significantly more likely to develop heart failure compared with those ...

Home April 02, 2024
Home
News | Heart Failure

March 29, 2024 — V-Wave announced it will present late-breaking data from its RELIEVE-HF pivotal trial at the American ...

Home March 29, 2024
Home
News | Heart Failure

March 25, 2024 — A team of engineers led by the University of Massachusetts Amherst and including colleagues from the ...

Home March 25, 2024
Home
News | Heart Failure

March 15, 2024 — BioCardia, Inc. , a biotechnology company focused on advancing late-stage cell therapy interventions ...

Home March 15, 2024
Home
News | Heart Failure

March 15, 2024 — BioCardia, Inc., a biotechnology company focused on advancing late-stage cell therapy interventions for ...

Home March 15, 2024
Home
News | Heart Failure

March 13, 2024 — BioCardia, Inc., a developer of cellular and cell-derived therapeutics for the treatment of ...

Home March 13, 2024
Home
News | Heart Failure

March 8, 2024 — The Texas Heart Institute, Georgia Institute of Technology (Georgia Tech), North Carolina State ...

Home March 08, 2024
Home
News | Heart Failure

March 5, 2024 — FIRE1 announced that it has completed patient enrollment in the U.S. Early Feasibility Study (FUTURE-HF2 ...

Home March 05, 2024
Home
Subscribe Now