News | Artificial Intelligence | February 15, 2017

Deep Learning in Medical Imaging to Create $300 Million Market by 2021

While early iterations have been met with skepticism, many radiologists taking a wait-and-see approach

deep learning, medical imaging, Signify Research market report, 2021
Signifiy Research, deep learning, medical imaging, product hierarchy, image analysis
Signify Research, world market, medical image analysis, deep learning, artificial intelligence

February 15, 2017 — Deep learning, also known as artificial intelligence, will increasingly be used in the interpretation of medical images to address many long-standing industry challenges. This will lead to a $300 million market by 2021, according to a new report by Signify Research, an independent supplier of market intelligence and consultancy to the global healthcare information technology industry.

In most countries, there are not enough radiologists to meet the ever-increasing demand for medical imaging. Consequently, many radiologists are working at full capacity. The situation will likely get worse, as imaging volumes are increasing at a faster rate than new radiologists entering the field. Even when radiology departments are well-resourced, radiologists are under increasing pressure due to declining reimbursement rates and the transition from volume-based to value-based care delivery. Moreover, the manual interpretation of medical images by radiologists is subjective, often based on a combination of experience and intuition, which can lead to clinical errors.

A new breed of image analysis software that uses advanced machine learning methods, e.g. deep learning, is tackling these problems by taking on many of the repetitive and time-consuming tasks performed by radiologists. There is a growing array of “intelligent” image analysis products that automate various stages of the imaging diagnosis workflow. In cancer screening, computer-aided detection can alert radiologists to suspicious lesions. In the follow-up diagnosis, quantitative imaging tools provide automated measurements of anatomical features. At the top-end of the scale of diagnostic support, computer-aided diagnosis provides probability-driven, differential diagnosis options for physicians to consider as they formulate their diagnostic and treatment decisions.

“Radiology is evolving from a largely descriptive field to a more quantitative discipline. Intelligent software tools that combine quantitative imaging and clinical workflow features will not only enhance radiologist productivity, but also improve diagnostic accuracy,” said Simon Harris, principal analyst at Signify Research and author of the report.

However, it is early days for deep learning in medical imaging. There are only a handful of commercial products and it is uncertain how well deep learning will cope with variations in patient demographics, imaging protocols, image artifacts, etc. Many radiologists were left underwhelmed by early-generation computer-aided detection, which used traditional machine learning and relied heavily on feature engineering. They remain skeptical of machine learning’s abilities, despite the leap in performance of today’s deep learning solutions, which automatically learn about image features from radiologist-annotated images and a "ground-truth”. Furthermore, the “black box” nature of deep learning and the lack of traceability as to how results are obtained could lead to legal implications. While none of these problems are insurmountable, healthcare providers are likely to take a ‘wait and see’ approach before investing in deep learning-based solutions.

“Deep learning is a truly transformative technology and the longer-term impact on the radiology market should not be underestimated. It’s more a question of when, not if, machine learning will be routinely used in imaging diagnosis”, Harris concluded.

“Machine Learning in Medical Imaging – 2017 Edition” provides a data-centric and global outlook on the current and projected uptake of machine learning in medical imaging. The report blends primary data collected from in-depth interviews with healthcare professionals and technology vendors, to provide a balanced and objective view of the market.

For more information: www.signifyresearch.net

Related Content

An example of Viz.AI's pulmonary embolism AI application and mobile alert to the physician on-call. Viz.AI and Avicenna.AI Partner to Launch Artificial Intelligence Care Coordination for Pulmonary Embolism and Aortic Disease

An example of Viz.AI's pulmonary embolism AI application and mobile alert to the physician on-call.

News | Artificial Intelligence | July 21, 2021
July 21, 2021 — Artificial int...
Circle Cardiovascular Imaging Partners With DiA Imaging Analysis to Deliver AI-Based Cardiovascular Imaging Solutions
News | Artificial Intelligence | June 28, 2021
June 28, 2021 — Circle Cardiovascular Imaging Inc. and DiA Imaging Analysis Ltd.
Point of care ultrasound, POCUS, combined with artificial intelligence, can help improve echo image quality by inexperienced sonographers.

Getty Images

News | Artificial Intelligence | June 25, 2021
June 25, 2021 – COVID-19 changed everything in healthcare, and a benefit from this pandemic was a surge in innovation
GE is integrating artificial intelligence into most of its imaging and information technology software. AI can aid fast critical care decision making. Above left is the vScan Air wireless point-of-care ultrasound system. It integrates AI for immediate, automated assessment of a patient's ejection fraction, right.

GE is integrating artificial intelligence into most of its imaging and information technology software. AI can aid fast critical care decision making. Above left is the vScan Air wireless point-of-care ultrasound system. It integrates AI for immediate, automated assessment of a patient's ejection fraction, right.

Feature | Artificial Intelligence | June 10, 2021
The digital transformation of healthcare is underway, but it will advance further and faster if key stakeholders work
AI Med will present its Virtual Clinical Series: Imaging Built by Clinicians, for Clinicians, June 29-30, 2021.
News | Artificial Intelligence | June 09, 2021
June 9, 2021 — AI Med will present its...
The Eko digital stethoscope can record heart soubnds and use an artificial intelligence  (AI) analysis algorithm to detect heart murmurs. I new study in the JAHA showed it has comparable performance to that of an expert cardiologist. Eko Digital Stethoscope AI Analysis Algorithm Validated in JAHA article for Detecting Heart Murmurs

The Eko digital stethoscope can record heart soubnds and use an artificial intelligence  (AI) analysis algorithm to detect heart murmurs. I new study in the JAHA showed it has comparable performance to that of an expert cardiologist.

News | Artificial Intelligence | May 10, 2021
May 10, 2021 — Eko announced the peer-reviewed publication of a clinical study that found that the Eko...
Cloud AI software-as-a-service (SaaS) can help streamline workflows and increase throughput, enabling echocardiographers to better measure global longitudinal strain (GLS) more routinely without impacting productivity. This is an example of the Ultromics EchoGo Core artificial intelligence algorithm with fully automates GLS.

Cloud artificial intelligence (AI) software-as-a-service (SaaS) can help streamline workflows and increase throughput, enabling echocardiographers to better measure global longitudinal strain (GLS) more routinely without impacting productivity. This is an example of the Ultromics EchoGo Core artificial intelligence algorithm, which fully automates GLS. Learn more at www.ultromics.com.

Feature | Artificial Intelligence | March 16, 2021
Heart failure (HF) is a prevalent ye