News | Artificial Intelligence | February 15, 2017

Deep Learning in Medical Imaging to Create $300 Million Market by 2021

While early iterations have been met with skepticism, many radiologists taking a wait-and-see approach

deep learning, medical imaging, Signify Research market report, 2021

February 15, 2017 — Deep learning, also known as artificial intelligence, will increasingly be used in the interpretation of medical images to address many long-standing industry challenges. This will lead to a $300 million market by 2021, according to a new report by Signify Research, an independent supplier of market intelligence and consultancy to the global healthcare information technology industry.

In most countries, there are not enough radiologists to meet the ever-increasing demand for medical imaging. Consequently, many radiologists are working at full capacity. The situation will likely get worse, as imaging volumes are increasing at a faster rate than new radiologists entering the field. Even when radiology departments are well-resourced, radiologists are under increasing pressure due to declining reimbursement rates and the transition from volume-based to value-based care delivery. Moreover, the manual interpretation of medical images by radiologists is subjective, often based on a combination of experience and intuition, which can lead to clinical errors.

A new breed of image analysis software that uses advanced machine learning methods, e.g. deep learning, is tackling these problems by taking on many of the repetitive and time-consuming tasks performed by radiologists. There is a growing array of “intelligent” image analysis products that automate various stages of the imaging diagnosis workflow. In cancer screening, computer-aided detection can alert radiologists to suspicious lesions. In the follow-up diagnosis, quantitative imaging tools provide automated measurements of anatomical features. At the top-end of the scale of diagnostic support, computer-aided diagnosis provides probability-driven, differential diagnosis options for physicians to consider as they formulate their diagnostic and treatment decisions.

“Radiology is evolving from a largely descriptive field to a more quantitative discipline. Intelligent software tools that combine quantitative imaging and clinical workflow features will not only enhance radiologist productivity, but also improve diagnostic accuracy,” said Simon Harris, principal analyst at Signify Research and author of the report.

However, it is early days for deep learning in medical imaging. There are only a handful of commercial products and it is uncertain how well deep learning will cope with variations in patient demographics, imaging protocols, image artifacts, etc. Many radiologists were left underwhelmed by early-generation computer-aided detection, which used traditional machine learning and relied heavily on feature engineering. They remain skeptical of machine learning’s abilities, despite the leap in performance of today’s deep learning solutions, which automatically learn about image features from radiologist-annotated images and a "ground-truth”. Furthermore, the “black box” nature of deep learning and the lack of traceability as to how results are obtained could lead to legal implications. While none of these problems are insurmountable, healthcare providers are likely to take a ‘wait and see’ approach before investing in deep learning-based solutions.

“Deep learning is a truly transformative technology and the longer-term impact on the radiology market should not be underestimated. It’s more a question of when, not if, machine learning will be routinely used in imaging diagnosis”, Harris concluded.

“Machine Learning in Medical Imaging – 2017 Edition” provides a data-centric and global outlook on the current and projected uptake of machine learning in medical imaging. The report blends primary data collected from in-depth interviews with healthcare professionals and technology vendors, to provide a balanced and objective view of the market.

For more information: www.signifyresearch.net


Related Content

News | Artificial Intelligence

January 27, 2023 — Blackford, the pioneering strategic imaging AI platform and solutions provider, and Brainomix, the AI ...

Home January 27, 2023
Home
News | Artificial Intelligence

December 19, 2022 — Anumana, Inc., an AI-driven health technology company and portfolio company of nference, has entered ...

Home December 19, 2022
Home
News | Artificial Intelligence

December 19, 2022 — As a leader in vascular care, Delray Medical Center is the first hospital in Florida to acquire the ...

Home December 19, 2022
Home
News | Artificial Intelligence

December 12, 2022 — US-based Weill Cornell Medicine has initiated a new clinical project together with the Mwanza ...

Home December 12, 2022
Home
News | Artificial Intelligence

November 23, 2022 — Viz.ai, the leader in AI-powered disease detection and intelligent care coordination, today ...

Home November 23, 2022
Home
News | Artificial Intelligence

November 21, 2022 — Artificial intelligence can improve diagnosis and treatment for patients, but first the AI-enabled ...

Home November 21, 2022
Home
News | Artificial Intelligence

November 16, 2022 — Viz.ai, the leader in AI-powered disease detection and intelligent care coordination, today ...

Home November 16, 2022
Home
News | Artificial Intelligence

November 16, 2022 — A study published in Nature Medicine reports the ability of a smartwatch ECG to accurately detect ...

Home November 16, 2022
Home
News | Artificial Intelligence

September 29, 2022 — Researchers at Mayo Clinic used artificial intelligence (AI) to evaluate patients’ ...

Home September 29, 2022
Home
News | Artificial Intelligence

September 22, 2022 — Medical imaging specialist Avicenna.AI announced a groundbreaking partnership with the MedTech ...

Home September 22, 2022
Home
Subscribe Now