News | Heart Valve Technology | October 04, 2016

First Bioresorbable Heart Valves Implanted to Enable Cardiovascular Restoration

Three European children implanted with Xeltis bioabsorbable pulmonary heart valve in feasibility study

Xeltis bioabsorbable pulmonary heart valve, Xplore-I clinical feasibility study, first pediatric implants, EACTS 2016

October 4, 2016 — Xeltis recently announced that three pediatric patients have been successfully implanted with the world’s first heart valve enabling cardiovascular restoration. The children have been enrolled in the “Xplore-I” clinical study of the Xeltis bioabsorbable pulmonary heart valve, a multi-centered feasibility trial currently enrolling pediatric patients from 2 to 21 years of age in leading heart centers in Europe.

The primary objective of the Xplore-I clinical feasibility study is to assess the survival rate of patients undergoing right ventricular outflow tract (RVOT) reconstruction at six months following implantation of the bioabsorbable heart valve. RVOT reconstruction is an open-heart surgery often involving pulmonary heart valve replacement. It is normally performed in children born with congenital heart defects. The first three trial implants have been conducted at Gottsegen György Hungarian Institute of Cardiology’s Pediatric Cardiac Centre in Budapest (Hungary) and University Children’s Hospital in Krakow (Poland).

VIDEO: How the Xeltis Bioresorbable Pulmonary Valve Works

“The Xplore-I patients are doing well and have been discharged from hospital,” said Zsolt Prodan, M.D., head of congenital heart surgery at Paediatric Cardiac Centre in Budapest, who performed the first two interventions in July. “The bioabsorbable implant is performing according to expectations,” he added.

Prodan presented trial details at the 30th Annual Meeting of the European Association of Cardio-Thoracic Surgery (EACTS), Oct. 1-5 in Barcelona, Spain.

"Reconstruction and replacement of diseased heart valves in children using patients’ own tissue could help reduce the risk of complications and of re-interventions observed with animal and human donor implants,” stated Thierry Carrel, M.D., principal investigator of the ‘Xplore-I’ study, and professor of surgery at the Clinic for Cardiovascular Surgery, University Hospital Bern (Switzerland). “We are quite confident regarding this technology, since children from the precursor feasibility study on bio-absorbable blood vessels demonstrate excellent results over two years after implantation,” he continued.

The Xeltis bioabsorbable heart valve employs a technique known as endogenous tissue restoration (ETR). ETR is a novel therapeutic approach in cardiovascular regenerative medicine enabling the restoration within the body of complex cardiac parts with patient’s own tissue. The porous structure of a Xeltis bioabsorbable heart valve enables cardiovascular restoration by harnessing the body’s natural healing process to pervade it with new healthy tissue once implanted. As a new healthy heart valve or blood vessel made of patient’s own tissue forms around the structure of the implant and takes over functionality, the implanted valve gets absorbed in the body.

For more information: www.xeltis.com

Related Content

Montreal Heart Institute Performs First Robotic Mitral Valve Surgery
News | Robotic Systems| September 22, 2017
The Montreal Heart Institute (MHI) announced the acquisition of the da Vinci Xi, a new-generation surgical robot, and...
Edwards Inspiris Resilia Valve Receives FDA Approval
News | Heart Valve Technology| September 21, 2017
Edwards Lifesciences Corp. recently received U.S. Food and Drug Administration (FDA) approval for its Inspiris Resilia...
Tryton Side Branch Stent Recognized With Premier Technology Breakthrough Award
News | Stents Bifurcation| September 21, 2017
September 21, 2017 — Cardinal Health and Tryton Medical Inc.
DISRUPT BTK Study Shows Positive Results With Lithoplasty in Calcified Lesions Below the Knee
News | Peripheral Artery Disease (PAD)| September 20, 2017
Shockwave Medical reported positive results from the DISRUPT BTK Study, which were presented at the annual...
Corindus Announces First Patient Enrolled in PRECISION GRX Registry
News | Robotic Systems| September 18, 2017
September 18, 2017 — Corindus Vascular Robotics Inc.
Two-Year ILLUMENATE Trial Data Demonstrate Efficacy of Stellarex Drug-Coated Balloon
News | Drug-Eluting Balloons| September 18, 2017
Philips announced the two-year results from the ILLUMENATE European randomized clinical trial (EU RCT) demonstrating...
Sentinel Cerebral Protection System Significantly Reduces Stroke and Mortality in TAVR
News | Embolic Protection Devices| September 18, 2017
September 18, 2017 – Claret Medical announced publication of a new study in the...
Fysicon Receives FDA Approval for QMAPP Hemodynamic Monitoring System
Technology | Hemodynamic Monitoring Systems| September 18, 2017
Fysicon announced that it has been granted 510(k) clearance by the U.S. Food and Drug Administration (FDA) for its...
Peter Schneider, M.D. presents late breaking clinical trial results at VIVA 17 in Las Vegas. Panelists (l to r) Krishna Rocha-Singh, M.D., Sean Lyden, M.D., John Kaufman, M.D., Donna Buckley, M.D.

Peter Schneider, M.D. presents late breaking clinical trial results at VIVA 17 in Las Vegas. Panelists (l to r) Krishna Rocha-Singh, M.D., Sean Lyden, M.D., John Kaufman, M.D., Donna Buckley, M.D.

Feature | Cath Lab| September 14, 2017
September 14, 2017 — Here are quick summaries for all the key late-breaking vascular and endovascular clinical trials
Mississippi Surgical and Vascular Center Uses Toshiba Ultimax-i FPD to Save Patients' Limbs
News | Angiography| September 14, 2017
The southern U.S. sees some of the highest numbers of chronic medical conditions, such as peripheral artery disease...
Overlay Init