News | February 27, 2014

Imaging Technique Can Diagnose Aortic Disease

February 27, 2014 — A new imaging technique for measuring blood flow in the heart and vessels can diagnose bicuspid aortic valve, and may lead to better prediction of complications.

A Northwestern Medicine team reported the finding in the journal Circulation. In the study, the authors demonstrated for the first time a previously unknown relationship between heart valve abnormalities, blood flow changes in the heart and aortic disease. They showed that blood flow changes were driven by specific types of abnormal aortic valves, and they were able to directly associate blood flow patterns with aortic diseases.

"Blood flow in patients with bicuspid aortic valves was significantly different compared to that in patients with normal valves," said senior author Michael Markl, associate professor of radiology at Northwestern University Feinberg School of Medicine. "We now have direct evidence that bicuspid valves induce changes in blood flow and that the type of flow abnormality may contribute to the development of different expressions of heart disease in these patients."

Bicuspid aortic valve is a heart condition in which the aortic valve only has two leaflets, instead of the normal three. It affects approximately one to two of every 100 Americans and is the most common congenital cardiovascular abnormality. Despite the absence of symptoms, the condition can lead to significant and potentially life-threatening complications, including aneurysm and rupture. However, it is not known which patients are at the highest risk for complications and whether the condition's origin is genetic or related to changes in blood flow.

The 4-D flow magnetic resonance imaging (MRI) used in the study has the potential for better predictive ability.

"The study demonstrated that new imaging techniques may help to determine patient-specific changes in blood flow to better understand which regional areas of the aorta are most prone to developing disease," Markl said. "In addition, the knowledge of abnormal blood flow patterns could be important to better identify patients at risk for the development of heart disease."

Markl's team was surprised to see such a clear distinction between individual expressions of aortic complications for different types of congenital valve disease. While the current findings show evidence of this link, long-term observational studies are needed to better understand the potential of 4-D flow MRI to improve disease prediction ability.

A longitudinal follow-up study in patients with bicuspid aortic valves is currently underway at Northwestern.

"Ultimately, we hope that this imaging technique will facilitate early identification of high-risk blood flow patterns associated with progressive aortic enlargement, improving the allocation of health care resources in caring for patients with this prevalent condition," Markl said.

For more information: www.northwestern.edu

Related Content

CMS Awards New Technology Add-on Payment for Perceval Sutureless Aortic Heart Valve
News | Heart Valve Technology| August 22, 2017
August 22, 2017 — LivaNova PLC announced its Perceval ...
Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Cardiac Imaging| August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Magnetic Resonance Imaging (MRI)| August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
Abbott Initiates First Clinical Trial of Clip-Based Tricuspid Repair System
News | Heart Valve Technology| August 09, 2017
Abbott announced that the first patient has been enrolled in a clinical study to evaluate a minimally invasive clip-...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI)| August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
The ChordArt transcatheter mitral valve leaflet chord replacement system on X-ray, showing the anchoring sections of the artificial chord.

The ChordArt transcatheter mitral valve leaflet chord replacement system on X-ray, showing the anchoring sections of the artificial chord.

News | Heart Valve Technology| August 01, 2017
Aug.
Hitachi and West Virginia University Partner to Advance Left Ventricular Mechanical Function Evaluation
News | Cardiovascular Ultrasound| July 21, 2017
Hitachi Healthcare and the West Virginia University Heart and Vascular Institute announced the formation of a new...
Cardiac CT scan showing plaque and calcification in the coronary arteries, from a Toshiba CT scanner
News | Business| July 19, 2017
July 19, 2017 — The Society of Cardiovascular Computed Tomography (SCCT) created a reimbursement fee chart for cardia
Overlay Init