News | Pacemakers | January 26, 2016

Mechanical Stimulation of Cardiac Cells Could Make Better Pacemakers

Study reveals that direct physical contact with cardiac cells not necessary, induced beating rate continued for one hour post-stimulation

mechanical stimulation, cardiac cells, pacemakers, Technion-Israel Institute of Technology study

January 26, 2016 — In a breakthrough that could change the future of pacemakers, Technion-Israel Institute of Technology researchers have used mechanical stimulation to “train” cardiac cells to beat at a given rate.

The team’s findings, published in Nature Physics, also demonstrate for the first time that direct physical contact with the cardiac cells isn’t required to synchronize their beating. As long as the cardiac cells are in the tissue being mechanically stimulated, they are trained by the stimulation, with long-lasting effects that persist even after it is stopped.

“Cell-cell communication is essential for growth, development and function,” explained Assistant Prof. Shelly Tzlil, of the Technion Faculty of Mechanical Engineering. “We have shown that cells are able to communicate with each other mechanically by responding to deformations created by their neighbors. The range of mechanical communication is greater than that of electrical and chemical interactions. Another significant discovery is that the duration of cell pacing is greater when the stimulus is mechanical, indicating that mechanical communication induces long-term alterations within the cell.”

The stimulation was applied by an artificial “mechanical cell,” consisting of a tiny probe (with a 0.0025 cm tip diameter) that generated (via cyclical indenting and pulling) periodic deformations in the underlying substrate (cardiac tissue). The deformations mimicked those generated by a beating cardiac cell that was also in the tissue. After a brief 10-minute training period, the cardiac cell synchronized its beating rate with the mechanical cell. Furthermore, the cardiac cell maintained the induced beating rate for more than one hour after mechanical stimulation was stopped.

“In this study, we show that an isolated cardiac cell can be trained to beat at a given frequency by mechanically stimulating the underlying substrate,” said Tzlil, who led the study. “Mechanical communication plays an important role in cardiac physiology, and is essential for converting electrical pacing into synchronized beating. Impaired mechanical communication will lead to arrhythmias even when electrical conduction is working properly. The medical implication is that adding mechanical elements to electrical pacemakers will significantly improve their efficiency.”

For more information: www.ats.org

Related Content

A key slide from Elnabawi's presentation, showing cardiac CT plaque evaluations, showing the impact of psoriasis medication on coronary plaques at baseline and one year of treatment. It shows a reversal of vulnerable plaque development. #SCAI, #SCAI2018

A key slide from Elnabawi's presentation, showing cardiac CT plaque evaluations, showing the impact of psoriasis medication on coronary plaques at baseline and one year of treatment. It shows a reversal of vulnerable plaque development.  

Feature | Cardiovascular Clinical Studies | May 14, 2018
May 14, 2018 – New clinical evidance shows common therapy options for psoriasis (PSO), a chronic inflammatory skin di
Intravenous Drug Use is Causing Rise in Heart Valve Infections, Healthcare Costs. #SCAI, #SCAI2018
News | Cardiovascular Clinical Studies | May 14, 2018
May 14, 2018 — The opioid drug epidemic is impacting cardiology, with a new study finding the number of patients hosp
Patient Enrollment Completed in U.S. IDE Study of THERMOCOOL SMARTTOUCH SF Catheter
News | Cardiovascular Clinical Studies | March 15, 2018
March 15, 2018 –  Johnson & Johnson Medical Devices Companies announced today that Biosense Webster, Inc., who wo
Lexington Begins HeartSentry Clinical Trial
News | Cardiovascular Clinical Studies | February 20, 2018
February 20, 2018 – Lexington Biosciences, Inc., a development-stage medical device company, announced the commenceme
Endologix Completes Patient Enrollment in the ELEVATE IDE Clinical Study
News | Cardiovascular Clinical Studies | February 06, 2018
February 6, 2018 – Endologix, a developer and marketer of treatments for aortic disorders, announced the completion o
12-Month Results from Veryan Medical's MIMICS-2 IDE Study Presented at LINC
News | Cardiovascular Clinical Studies | February 01, 2018
February 1, 2018 – Thomas Zeller (Bad Krozingen, Germany) presented the 12-month results from Veryan Medical’s MIMICS
LimFlow Completes U.S. Feasibility Study Enrollment, Receives FDA Device Status
News | Cardiovascular Clinical Studies | February 01, 2018
February 1, 2018 –  LimFlow SA, developer of minimally-inv
ESC 2017 late breaking trial hot line study presentations.
News | Cardiovascular Clinical Studies | September 12, 2017
September 12, 2017 – The European Society of Cardiology (ESC) Congress 2017 includes several Hot Line Late-breaking C
U.K., NHS studies, weekend effect, hospital admission, atrial fibrillation, heart failure
News | Cardiovascular Clinical Studies | June 28, 2016
New research shows patients admitted to National Health Service (NHS) hospitals in the United Kingdom for atrial...
stroke risk
News | Cardiovascular Clinical Studies | August 28, 2015
Most people assume strokes only happen to octogenarians, but recent evidence suggests that survivors of childhood can
Overlay Init