News | Pacemakers | January 26, 2016

Mechanical Stimulation of Cardiac Cells Could Make Better Pacemakers

Study reveals that direct physical contact with cardiac cells not necessary, induced beating rate continued for one hour post-stimulation

mechanical stimulation, cardiac cells, pacemakers, Technion-Israel Institute of Technology study

January 26, 2016 — In a breakthrough that could change the future of pacemakers, Technion-Israel Institute of Technology researchers have used mechanical stimulation to “train” cardiac cells to beat at a given rate.

The team’s findings, published in Nature Physics, also demonstrate for the first time that direct physical contact with the cardiac cells isn’t required to synchronize their beating. As long as the cardiac cells are in the tissue being mechanically stimulated, they are trained by the stimulation, with long-lasting effects that persist even after it is stopped.

“Cell-cell communication is essential for growth, development and function,” explained Assistant Prof. Shelly Tzlil, of the Technion Faculty of Mechanical Engineering. “We have shown that cells are able to communicate with each other mechanically by responding to deformations created by their neighbors. The range of mechanical communication is greater than that of electrical and chemical interactions. Another significant discovery is that the duration of cell pacing is greater when the stimulus is mechanical, indicating that mechanical communication induces long-term alterations within the cell.”

The stimulation was applied by an artificial “mechanical cell,” consisting of a tiny probe (with a 0.0025 cm tip diameter) that generated (via cyclical indenting and pulling) periodic deformations in the underlying substrate (cardiac tissue). The deformations mimicked those generated by a beating cardiac cell that was also in the tissue. After a brief 10-minute training period, the cardiac cell synchronized its beating rate with the mechanical cell. Furthermore, the cardiac cell maintained the induced beating rate for more than one hour after mechanical stimulation was stopped.

“In this study, we show that an isolated cardiac cell can be trained to beat at a given frequency by mechanically stimulating the underlying substrate,” said Tzlil, who led the study. “Mechanical communication plays an important role in cardiac physiology, and is essential for converting electrical pacing into synchronized beating. Impaired mechanical communication will lead to arrhythmias even when electrical conduction is working properly. The medical implication is that adding mechanical elements to electrical pacemakers will significantly improve their efficiency.”

For more information: www.ats.org


Related Content

News | Cardiovascular Clinical Studies

April 16, 2024 — CVRx, Inc., a commercial-stage medical device company, announced today the availability of additional ...

Home April 16, 2024
Home
News | Cardiovascular Clinical Studies

April 11, 2024 — Transcatheter aortic valve replacement (TAVR) was found to bring no increased risks and was associated ...

Home April 11, 2024
Home
News | Cardiovascular Clinical Studies

April 11, 2024 — People with a buildup of fatty atherosclerotic plaque in the heart’s arteries considered at risk of ...

Home April 11, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — Patients who took an angiotensin-converting enzyme (ACE) inhibitor while undergoing cancer treatment ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — One of the first studies to attempt to treat early-stage heart failure in patients with Type 2 diabetes ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — The investigational drug ninerafaxstat showed a good tolerability and safety profile, along with ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — Administering tranexamic acid (TxA), a drug used to reduce bleeding during heart surgery, topically ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — Using a web application to qualify individuals for treatment with a nonprescription statin closely ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 9, 2024 — People with a small aortic annulus, a part of the heart’s anatomy where the left ventricle meets the ...

Home April 09, 2024
Home
News | Cardiovascular Clinical Studies

April 8, 2024 — People with diabetes who had suffered a heart attack derived no clinical benefit from edetate disodium ...

Home April 08, 2024
Home
Subscribe Now