News | Artificial Intelligence | September 28, 2018

Medical Students Need More Education on Artificial Intelligence

Review of published research identifies gaps in knowledge for next generation of healthcare professionals on key emerging technology

Medical Students Need More Education on Artificial Intelligence

September 28, 2018 — Artificial intelligence (AI) driven by machine learning (ML) algorithms is a branch in the field of computer science that is rapidly gaining popularity within the healthcare sector. However, graduate medical education and other teaching programs within academic teaching hospitals across the U.S. and around the world have not yet come to grips with educating students and trainees on this emerging technology.

"The general public has become quite aware of AI and the impact it can have on healthcare outcomes such as providing clinicians with improved diagnostics. However, if medical education does not begin to teach medical students about AI and how to apply it into patient care then the advancement of technology will be limited in use and its impact on patient care," explained corresponding author Vijaya B. Kolachalama, Ph.D., assistant professor of medicine at Boston University School of Medicine (BUSM).

Using a PubMed search with 'machine learning' as the medical subject heading term, the researchers found that the number of papers published in the area of ML has increased since the beginning of this decade. In contrast, the number of publications related to undergraduate and graduate medical education have remained relatively unchanged since 2010.

Realizing the need for educating the students and trainees within the Boston University Medical Campus about ML, Kolachalama designed and taught an introductory course at BUSM. The course is intended to educate the next generation of medical professionals and young researchers with biomedical and life sciences backgrounds about ML concepts and help prepare them for the ongoing data science revolution.

The authors believe that if medical education begins to implement ML curriculum, physicians may begin to recognize the conditions and future applications where AI could potentially benefit clinical decision making and management early on in their career and be ready to utilize these tools better when beginning practice. "As medical education thinks about competencies for physicians, ML should be embedded into information technology and the education in that domain," said Priya Sinha Garg, M.D., associate dean ad interim for academic affairs at BUSM.

The authors hope this perspective article stimulates medical school and residency programs to think about the progressing field of AI and how to use it in patient care. "Technology without physician knowledge of its potential and applications does not make sense and will only further perpetuate healthcare costs."

These findings appear as a perspective in the journal NPJ Digital Medicine.

For more information: www.nature.com/npjdigitalmed

Reference

1. Kolachalama V.B., Garg P.S. Machine learning and medical education. NPJ Digital Medicine, Sept. 27, 2018. https://doi.org/10.1038/s41746-018-0061-1

Related Content

Videos | Artificial Intelligence | December 12, 2018
This is a quick video tour of the Machine Learning Showcase at the ...
Bay Labs Collaborating With Edwards Lifesciences on AI for Heart Disease Detection
News | Artificial Intelligence | December 10, 2018
Medical artificial intelligence (AI) company Bay Labs announced a collaboration with Edwards Lifesciences focused on...
An example of artificial intelligence-aided clinical decision support software for a heart failure patient from the vendor HealthReveal. The AI pulled in relevant patient data from the electronic medical record and offers recommendations for care based on current American Heart Association (AHA) guidelines. It also offers the citations for where to find the guidelines and prescribing information for the recommended drug. Machine learning for cardiology.

An example of artificial intelligence-aided clinical decision support software for a heart failure patient from the vendor HealthReveal. The AI pulled in relevant patient data from the electronic medical record and offers recommendations for care based on current American Heart Association (AHA) guidelines. It also offers the citations for where to find the guidelines and prescribing information for the recommended drug.

Feature | Artificial Intelligence | December 06, 2018 | Lonny Reisman, M.D.
The consistent provision of guideline-directed medical therapy (GDMT) — care delivered according to established guide
AI Predicts Cardiovascular Disease Risk From CT Scans
News | Artificial Intelligence | November 27, 2018
November 27, 2018 – Zebra Medical Vision and Clalit Health Services announced the completion of a research project th
AI Algorithm Outperforms Most Cardiologists in Heart Murmur Detection
News | Artificial Intelligence | November 11, 2018
At the American Heart Association’s (AHA) Scientific Sessions 2018, Nov. 10-12 in Chicago, Eko presented a clinical...
New Regulatory Approvals Driving Research and Development Dollars in Medical Imaging Artificial Intelligence
News | Artificial Intelligence | August 01, 2018
Medical imaging has become the bellwether for the application of artificial intelligence (AI) technologies, especially...
Videos | Artificial Intelligence | July 10, 2018
Partho Sengupta, M.D., DM, FACC, FASE, chief division of cardiology, director of cardiac imaging, West Virginia Unive
Overlay Init