News | Magnetic Resonance Imaging (MRI) | December 01, 2015

MRI Reveals Heart Changes During Apnea in Elite Divers

MRI shows that during a long apnea period, the heart struggles and eventually begins to fail

This study looked at the effects of long periods of apnea on the heart. Cardiac MRI showing normal left ventricular function in the standard horizontal long axis (upper two images) and with corresponding short axis (lower two images) in diastole (left) and systole (right), at the mid ventricular section of the heart (white line).

Free divers can hold their breath for more than five minutes underwater. 

December 1, 2015 — Athletes who engage in the extreme sport of free diving, descending hundreds of feet below the surface of the ocean while holding their breath, undergo significant cardiovascular changes, according to a new study presented today at the annual meeting of the Radiological Society of North America (RSNA). These changes can pose potential dangers, particularly to inexperienced or cardiac untrained divers.

Apnea is the temporary suspension of breathing. The ancient practice of free or apnea diving has experienced immense growth worldwide over the past decade, due to coverage in the media and increased competition and training opportunities for elite and recreational divers. The sport can be dangerous, because divers must hold their breath for prolonged periods while undergoing massive water pressure and physiological changes.

Recreational divers are at greatest risk because of lack of conditioning, but even elite divers have suffered lasting or fatal effects resulting from free diving. Most recently, champion diver Natalia Molchanova was reported missing and presumed dead off the coast of Spain during a dive in August 2015.

Researchers at the University of Bonn in Bonn, Germany, used MRI to study the simulated effects of free diving on the cardiovascular systems of 17 elite free divers from Germany and Austria (age range 23 to 58). To study the effects of a lack of oxygen on heart function and blood flow, respectively, the divers underwent cardiac MRI and MRI of the carotid arteries before, during and after a maximum breath hold.

"We wanted to look at the changes that occur in the heart during apnea in real time," explained study author Jonas Dörner, M.D., who is now a radiology resident at the University Hospital of Cologne.

The average apnea was 299 seconds (just under five minutes) and 279 seconds or about four and a half minutes for the first and second MRI exams, respectively. The maximum breath hold (or apnea) during the exams was eight minutes and three seconds.

"These athletes train to be able to hold their breath for long periods," Dörner said. "When they get into the water, they are able to hold their breath even longer due to the diving reflex."

When submerged underwater without access to oxygen, the body responds with what is called "diving reflex," which includes a decreased heart rate, a constriction of blood vessels in the extremities, and a shift in blood flow from the extremities to the brain. These changes also occur – to a lesser degree – during prolonged breath holding without being submerged. As oxygenated blood is diverted from the rest of the body to the brain, blood pressure increases.

The MRI exams allowed the researchers to observe the cardiovascular changes involved in the diving reflex in real time. During apnea, the amount of blood flowing to the brain through the carotid arteries increased and then leveled off.

"At the beginning of the apnea period, the heart pumped more strongly than when the heart was at rest," Dörner said. "Over time, the heart dilated and began to struggle."

By the end of the apnea period, Dörner said the divers' heart function began to fail.

"At that point, not enough blood is being pumped to the brain," he said. "The heart is unable to pump against the high resistance of the blood vessels."

Although the changes in the divers' systolic heart function during apnea are similar to those in patients with systolic heart failure, Dörner said that the condition was transient in the divers.

"The divers' heart function recovered within minutes of breathing again," said Claas Nähle, M.D., head of this cardiac magnetic resonance research group. "It appears that elite divers develop compensatory mechanisms that help them adapt to the cardiovascular changes that occur during apnea." However, for individuals with less training, free diving may be problematic.

"As a recreational activity, free diving could be harmful for someone who has heart or other medical conditions and is not well trained for the activity," said one of the study's leaders, Lars Eichhorn, M.D., from the Department of Anesthesiology and Intensive Care Medicine at the University Hospital of Bonn.

Eichhorn added that deaths among highly trained divers are mostly seen in the discipline called deep diving, a special type of apnea diving that combines the risk of prolonged apnea with changes of ambient pressure.

Other co-authors on the study are Jean-Marc Lunkenheimer, Julian A. Luetkens, M.D., Juergen Gieseke, D.Sc., Rainer Meyer, Ph.D., Andreas Hoeft, M.D., and Hans H. Schild, M.D.

For more information: RadiologyInfo.org

Related Content

Rafael Rivero, M.D., Global Head of Medical Affairs at MSI, said: "The importance of MyoStrain cannot be understated because of the test's immense clinical value and ability to quantify intramyocardial dysfunction across 48 segments of the heart. In a six-heartbeat MRI scan, MyoStrain arms physicians with novel clinical information about a patient's heart health."
News | Cardiac Imaging | August 11, 2020
August 11, 2020 — Myocardial Solutions, Inc. and United Imaging, Inc.
The Mindways Solid phantom with volume of interest in the quality assurance phantom (red circles, left side). A participant's noncontrast-enhanced axial CT (right side) with volume of interest (yellow circles) in the trabecular bone compartment of three vertebrae for bone mineral density measurements. Image courtesy of Radiological Society of North America

The Mindways Solid phantom with volume of interest in the quality assurance phantom (red circles, left side). A participant's noncontrast-enhanced axial CT (right side) with volume of interest (yellow circles) in the trabecular bone compartment of three vertebrae for bone mineral density measurements. Image courtesy of Radiological Society of North America

News | Cardiac Imaging | July 15, 2020
July 15, 2020 — ...
Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

Cardiac MR can offer data above and beyond anatomical imaging, which is the main reason why this system was installed at Baylor Scott White Heart Hospital in Dallas. The system is a dedicated heart MRI scanner.

News | Cardiac Imaging | June 29, 2020
June 29, 2020 — A type of smart magnetic r...
New Multimodality Cardiac Imaging Guidelines for Competitive Athletes Created. ASE SCCT and SCMR recommendations for imaging, screening atheletes.
News | Cardiac Imaging | May 11, 2020
May 11, 2020 – Competitive athletes are a rapidly growing population worldwide.
Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrow

Figure 4 for the study. Images of a 65-year-old man (patient 6). (a) Cardiac MRI perfusion shows perfusion deficit of anterior/anterolateral wall attributed to left anterior descending artery/left circumflex artery (*). (b) CT coronary angiography. (c) Coronary angiography, left anterior oblique projection with caudal angulation. (d) Three-dimensional image fusion helped refine diagnosis: perfusion deficits (*) were most likely caused by narrow first diagonal branch and its first, stented side branch (arrowhead). Retrospectively, denoted lesion could also be found at CT coronary angiography and coronary angiography (arrowheads in b and c, respectively). CT FFR = CT-derived fractional flow reserve, LGE = late gadolinium enhancement. Image courtesy of RSNA, Radiology.

News | Cardiac Imaging | May 04, 2020
May 4, 2020 – A new technique that combines computed tomography (CT) and magnetic resonance imaging MRI can bolster c
An example of a coronary computed tomography angiography (CCTA) exam. The CIAO study looked at patients who have a problem of blood flow limitation and chest pain symptoms in the absence of a 50 percent or more artery narrowing, known as ischemia with no obstructive CAD, or INOCA.

An example of a coronary computed tomography angiography (CCTA) exam. The CIAO study looked at patients who have a problem of blood flow limitation and chest pain symptoms in the absence of a 50 percent or more artery narrowing, known as ischemia with no obstructive CAD, or INOCA.

News | Cardiac Imaging | April 03, 2020
April 3, 2020 — Patients who experience chest pain and have abnormal results on a cardiac stress test but who do not
Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data

Figure 1: Depiction of the fully automated CT biomarkers tools used in this study. (A) Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data. (B) Case example in an asymptomatic 52-year-old man undergoing CT for colorectal cancer screening. At the time of CT screening, he had a body-mass index of 27·3 and Framingham risk score of 5% (low risk). However, several CT-based metabolic markers were indicative of underlying disease. Multivariate Cox model prediction based on these three CT-based results put the risk of cardiovascular event at 19% within 2 years, at 40% within 5 years, and at 67% within 10 years, and the risk of death at 4% within 2 years, 11% within 5 years, and 27% within 10 years. At longitudinal clinical follow-up, the patient suffered an acute myocardial infarction 3 years after this initial CT and died 12 years after CT at the age of 64 years. (C) Contrast-enhanced CT performed 7 months before death for minor trauma was interpreted as negative but does show significant progression of vascular calcification, visceral fat, and hepatic steatosis. HU=Hounsfield units.

News | Cardiac Imaging | March 06, 2020
March 6, 2020 — Researchers at the National Institutes of Health a