News | May 07, 2015

Redesigned MRI Systems May Increase Access for Patients With Implanted Devices

Massachusetts General-led team uses stealth technology to prevent excess heating of signal-carrying device leads

MRI, redesigned, implanted devices, pacemakers, MGH, Bonmassar, RTS

May 7, 2015 — New technology developed at the Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH) may extend the benefits of magnetic resonance imaging (MRI) to many patients whose access to MRI is currently limited. A redesign of the wire at the core of the leads carrying signals between implanted medical devices and their target structures significantly reduces the generation of heat that occurs when standard wires are exposed to the radiofrequency (RF) energy used in MRI. The novel system is described in a paper published in the online Nature journal Scientific Reports.

"Clinical electrical stimulation systems such as pacemakers and deep-brain stimulators are increasingly common therapies for patients with a large range of medical conditions, but a significant limitation of these devices is restricted compatibility with MRI," says Giorgio Bonmassar, Ph.D., of the Martinos Center, senior and corresponding article of the paper. "The tests performed on our prototype deep-brain stimulation lead indicate a three-fold reduction in heat generation, compared with a commercially available lead; and the use of such leads could significantly expand how many patients may safely access the benefits of MRI."

For many years the primary limitation to the use of MRI in patients with implanted devices was the risk that the powerful magnetic fields would dislodge devices containing ferromagnetic (attracted by magnetic fields) metals, but the devices now available avoid using those metals. However, the RF energy used in MRI can increase the electrical current induced in the nonmagnetic metallic wires at the center of presently available device leads, producing heat that can damage tissues at the site where a stimulating signal is delivered. Even though the U.S. Food and Drug Administration (FDA) has authorized a group of "MR conditional" devices that can be used in some situations, those are limited to low-power scanners that cannot provide the information available from today's more powerful state-of-the-art MRI systems. It is estimated that around 300,000 patients worldwide are prevented from receiving MRI exams each year because of implanted devices.

The wires designed by the MGH/Martinos Center team use what is called resistive tapered stripline (RTS) technology that breaks up the RF-induced current increase by means of an abrupt change in the electrical conductivity of wires made from conductive polymers, a "cloaking" technique also used in some forms of stealth aircraft. After calculating the features required to produce an RTS lead that would minimize heat generation, the investigators designed and tested a deep-brain stimulation device with such a lead in a standard system used for MRI testing of medical implants - a gel model the size of an adult human head and torso. Compared with a commercially available lead, the RTS lead generated less than half the heat produced by exposure to a powerful MRI-RF field, a result well within current FDA limits.

Study co-author Emad Eskandar, M.D., of the MGH Department of Neurosurgery notes that the ability to conduct MR exams on patients with deep-brain stimulation implants would significantly improve the critical process of ensuring that the signal is being delivered to the right area, something that is not possible with computed tomography (CT) imaging. "For epilepsy patients and their providers, brain MRIs could provide much more accurate information about the sites where seizures originate and their relation to other brain structures, maximizing the effectiveness and improving the safety of implants that reduce or eliminate seizures. MR-compatible leads also would allow patients with brain implants to have MRIs of other parts of their body — knee, spine, breast — something that is currently prohibited," he said.

Bonmassar stressed that the team's RTS lead technology would be applicable to any type of active implant — including pacemakers, defibrillators and spinal cord stimulators. The research team is now pursuing an FDA Investigational Device Exemption that will allow clinical trials of devices with RTS leads. "The Obama administration's BRAIN initiative is sponsoring grant applications to study recording and/or stimulation devices to treat nervous system disorders and better understand the human brain," he said. "By pursuing these opportunities we hope that one day no patients will be denied access to state-of-the-art MRI examinations."

For more information: www.nmr.mgh.harvard.edu

Related Content

Biotronik Announces U.S. Launch of Edora HF-T QP CRT Pacemaker
Technology | Cardiac Resynchronization Therapy Devices (CRT)| August 21, 2017
Biotronik announced U.S. Food and Drug Administration (FDA) approval and commercial availability of Edora HF-T QP, an...
Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Cardiac Imaging| August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
The FDA is concerned about cybersecurity of ICDs and cyber security of other medical devices.
Feature | Cybersecurity| August 16, 2017 | Dave Fornell
There is growing concern among patients and regulators that medical devices, especially implantable electrophysiology
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Magnetic Resonance Imaging (MRI)| August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
Three New Atrial Fibrillation Studies to Feature HeartLight Endoscopic Ablation System
News | Ablation Systems| August 07, 2017
CardioFocus Inc. announced that its HeartLight Endoscopic Ablation System is being featured in three new major clinical...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI)| August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
Merge Hemo cath lab hemodynamics monitoring system.

Hemodynamic data shown on screens from the Merge Hemo recording system. It is among the newer generation hemodynamic systems for cath labs that are more user friendly and have technologies to speed workflow.

Feature | Hemodynamic Monitoring Systems| August 03, 2017 | Dave Fornell
The current generation of...
Left Atrial Pressure Monitor from Vectorious Medical Technologies Offers New Hope for Heart Failure Patients

On of the top stories in July was the introduction of a left atrial pressure monitor from Vectorious Medical Technologies to prevent heart failure patient hospitalizations or readmissions. Read the article"Left Atrial Pressure Monitor Offers New Hope for Heart Failure Patients."

Feature | August 01, 2017 | Dave Fornell
Aug.
Overlay Init