Technology | Clinical Decision Support | February 14, 2018

FDA Clears First AI-Powered Clinical Decision Support Software for Stroke

Viz.AI Contact application uses artificial intelligence algorithm to analyze CT images for stroke indicators; approval paves way for future computer-aided triage software devices

FDA Clears First AI-Powered Clinical Decision Support Software for Stroke

February 14, 2018 — The U.S. Food and Drug Administration (FDA) announced marketing clearance for Viz.AI’s Contact application, the first artificial intelligence (AI)-based clinical decision support (CDS) solution cleared for sale in the U.S. Viz.AI Contact is designed to analyze computed tomography (CT) results that may notify providers of a potential stroke in their patients.

A stroke occurs if the flow of oxygen-rich blood to a portion of the brain is blocked, also known as an occlusion. According to the Centers for Disease Control and Prevention, stroke is the fifth leading cause of death in the U.S. and is a major cause of serious disability for adults. About 795,000 people in the U.S. have a stroke each year.

“Strokes can cause serious and irreversible damage to patients. The software device could benefit patients by notifying a specialist earlier thereby decreasing the time to treatment. Faster treatment may lessen the extent or progression of a stroke,” said Robert Ochs, Ph.D., acting deputy director for radiological health, Office of In Vitro Diagnostics and Radiological Health in the FDA’s Center for Devices and Radiological Health.

The Viz.AI Contact application is a computer-aided triage software that uses an artificial intelligence algorithm to analyze images for indicators associated with a stroke. These types of algorithms can assist providers in identifying the most appropriate treatment plan for a patient’s disease or condition. The FDA is currently creating a regulatory framework for these products that encourages developers to create, adapt and expand the functionalities of their software to aid providers in diagnosing and treating diseases and conditions.

The Viz.AI Contact application is designed to analyze CT images of the brain and send a text notification to a neurovascular specialist if a suspected large vessel occlusion (LVO) has been identified. The algorithm will automatically notify the specialist during the same time the first-line provider is conducting a standard review of the images, potentially involving the specialist sooner than the usual standard of care in which patients wait for a radiologist to review CT images and notify a neurovascular specialist. The notification can be sent to a mobile device, such as a smartphone or tablet, but the specialist still needs to review the images on a clinical workstation.

The Viz.AI Contact application is intended to be used by neurovascular specialists, such as vascular neurologists, neuro-interventional specialists or other professionals with similar training. The application is limited to analysis of imaging data and should not be used as a replacement of a full patient evaluation or solely relied upon to make or confirm a diagnosis.

The company submitted a retrospective study of 300 CT images that assessed the independent performance of the image analysis algorithm and notification functionality of the Viz.AI Contact application against the performance of two trained neuro-radiologists for the detection of large vessel blockages in the brain. Real-world evidence was used with a clinical study to demonstrate that the application could notify a neurovascular specialist sooner in cases where a blockage was suspected. The Viz.ai LVO Stroke Platform obtained an AUC of 0.91, identifying LVOs and alerting the relevant specialist with 90 percent sensitivity and specificity, and a median scan to notification time of under 6 minutes. In over 95 percent of cases, the automatic notifications demonstrated faster notification of the specialist, saving between 6 and 206 minutes, with an average time saving of 52 minutes.

The Viz.AI Contact application was reviewed through the De Novo premarket review pathway, a regulatory pathway for some new types of medical devices that are low to moderate risk and have no legally marketed predicate device to base a determination of substantial equivalence. This action also creates a new regulatory classification, which means that subsequent computer-aided triage software devices with the same medical imaging intended use may go through the FDA’s premarket 510(k) notification process, whereby devices can obtain marketing authorization by demonstrating substantial equivalence to a predicate device.

For more information: www.viz.ai

Related Artificial Intelligence Content

Advances in Cardiac Imaging Technologies at RSNA 2017

Technology Report: Artificial Intelligence at RSNA 2017

VIDEO: Examples of How Artificial Intelligence Will Improve Medical Imaging

VIDEO: Deep Learning is Key Technology Trend at RSNA 2017

VIDEO: How Utilization of Artificial Intelligence Will Impact Radiology

Why AI By Any Name Is Sweet For Radiology

 

Related Content

Philips Launches HealthSuite Insights AI Platform for Healthcare
Technology | Artificial Intelligence | March 19, 2018
March 19, 2018 — Philips recently announced the launch of HealthSuite Insights, including the Insights Marketplace, t
Aidoc Introduces AI Solution for Whole-Body CT Scan Analysis
News | Artificial Intelligence | February 20, 2018
Deep learning startup company Aidoc announced what it calls the world’s first and only comprehensive, full-body...
GE and NVIDIA Unveil Artificial Intelligence Upgrades to CT, Ultrasound and Analytics Solutions
Technology | Artificial Intelligence | December 14, 2017
At the 2017 Radiological Society of North America (RSNA) Annual Meeting, GE Healthcare and NVIDIA announced a series of...
Fujifilm Introduces Artificial Intelligence Initiative for U.S. Market at RSNA 2017
News | Artificial Intelligence | December 04, 2017
Fujifilm Medical Systems U.S.A. Inc. announced the expansion of the company's artificial intelligence (AI) development...
Xavier University Announces Healthcare Artificial Intelligence Summit
News | Artificial Intelligence | August 07, 2017
Xavier University has launched the Xavier Center for Artificial Intelligence (AI), a pioneering effort to accelerate...
Automated medical imaging views using deep learning, artificial intelligence, Philips Epiq

GE, Siemens and Philips are among the echocardiography vendors that incorporate deep learning algorithms into its echo software to help automatically extract standard imaging views from 3-D ultrasound datasets. This is an example of the Philips Epiq system, which uses the vendor's Anatomical Intelligence software to define the anatomical structures and automatically display standard diagnostic views of the anatomy without human intervention. This can greatly speed workflow and reduce inter-operator variability. 

Feature | Artificial Intelligence | July 17, 2017 | Oksana Bandura
Medical image analysis based on artificial intelligence (AI) employ convolutional neural networks, support vector mac
iRhythm and Stanford Researchers Develop Deep Learning-Based Cardiac Arrhthymia Detection Algorithm
News | Artificial Intelligence | July 11, 2017
iRhythm Technologies Inc. announced a collaboration with the Stanford Machine Learning Group that has resulted in the...
Partners HealthCare and GE Healthcare Launch 10-year Collaboration on Artificial Intelligence
News | Artificial Intelligence | May 17, 2017
May 17, 2017 — Partners HealthCare and GE Healthcare announced a 10-year collaboration to rapidly develop, validate a
AI, deep learning, artificial intelligence, medical imaging, cardiology, echo AI, clinical decision support, echocardiography

An example of artificial intelligence from the start-up company Viz. The image shows how the AI software automatically reviews an echocardiogram, completes an automated left ventricular ejection fraction quantification and then presents the data side by side with the original cardiology report. The goal of the software is to augment clinicians and cardiologists by helping them speed workflow, act as a second set of eyes and aid clinical decision support.

Feature | Artificial Intelligence | March 10, 2017 | Dave Fornell
Artificial intelligence (AI) has captured the imagination and attention of doctors over the past couple years as seve
IBM, Watson Health, Imaging Clinical Review, first cognitive imaging offering, HIMSS17
News | Artificial Intelligence | March 02, 2017
IBM at the 2017 Healthcare Information and Management Systems Society Conference and Exhibition (HIMSS17) introduced...
Overlay Init