Feature | February 05, 2013

Next-Generation CT Scanner Provides Better Images With Minimal Radiation

Toshiba Medical Systems NIH Clinical Study CT System

February 5, 2013 — A new computed tomography (CT) scanner substantially reduces potentially harmful radiation while still improving overall image quality. National Institutes of Health (NIH) researchers, along with engineers at Toshiba Medical Systems, worked on the scanner. An analysis of data on 107 patients undergoing heart scans found that radiation exposure was reduced by as much as 95 percent compared to the range of current machines, while the resulting images showed less blurriness, reduced graininess and greater visibility of fine details.

The machine recently received approval by the U.S. Food and Drug Administration (FDA), but more studies will be needed before it can be adopted for wide clinical use.

“CT scans are a great diagnostic tool for heart disease because we can obtain high-resolution 3-D images of the heart quickly and non-invasively,” said coauthor Andrew Arai, M.D., chief of the Cardiovascular and Pulmonary Branch at the NIH’s National Heart, Lung and Blood Institute (NHLBI). “However, the benefits of CT have been tempered by concerns over the radiation required to achieve these images. With this next-generation device, we are close to achieving the best of both worlds.”

Most CT scanners available in clinics have 64 rows of X-ray detectors. The new scanner has 320 detector rows, which allow imaging of a larger area of the body at one time. The new scanner also has a more powerful X-ray beam generator. And the gantry — the doughnut-shaped part of the CT machine — can complete a full rotation in 275 milliseconds. Current scanners top out at 350-millisecond rotations. In addition to hardware advances, the NHLBI team worked on the device settings and features with Toshiba to optimize radiation usage and image quality.

“These multiple advancements work together to allow us to image the entire heart within one heartbeat about 93 percent of the time,” noted lead study author Marcus Chen, M.D., a clinician in the NHLBI’s Advanced Cardiovascular Imaging Laboratory.

“These improvements could help clinicians identify problems in even the smallest blood vessels or enable them to conduct complicated tests like measuring blood flow in the heart while limiting radiation exposure,” Chen added.

Between July and October 2012, Chen and colleagues used the new scanner to perform CT angiographies — which look for plaque buildup or other problems in the coronary arteries — on 107 adults of varied height and weight, between the ages of 27 and 82. The research team then compared both the radiation dose and image quality of the new CT scans to 100 scans taken on a first-generation 320-detector row scanner at the NIH campus between January and April 2010.

The median effective radiation dose for the new scanner was 0.93 millisieverts (mSv), compared to 2.67 mSv for the first-generation scanner, and almost every patient (103 of 107) received less than 4 mSv of radiation. (millisieverts reflect how much radiation a body absorbs, so it can help determine potential health risks. The average person receives about 2.4 mSv of background radiation each year.) Nationwide, coronary CT angiography typically involves effective radiation doses between 5 and 20 mSv, depending on the patient's body type and the quality of the machine.

The study, which was published Jan. 22 online in the journal Radiology, was funded by the NHLBI intramural research program (HL006138-02). The CT machine was provided to the NHLBI by Toshiba Medical Systems through a cooperative research agreement.

The National Heart, Lung, and Blood Institute (NHLBI) is a component of the National Institutes of Health. NHLBI plans, conducts, and supports research related to the causes, prevention, diagnosis and treatment of heart, blood vessel, lung and blood diseases; and sleep disorders. The Institute also administers national health education campaigns on women and heart disease, healthy weight for children, and other topics.

For more information: www.nhlbi.nih.gov

Related Content

News | Cardiac Diagnostics| February 17, 2017
Levels of a protein in the blood associated with heart disease are also linked to early-stage brain damage, according...
Mercator MedSystems, DANCE trial data, ISET, LINC, Bullfrog Micro-Infusion Device
News | Peripheral Arterial Disease (PAD)| February 15, 2017
Mercator MedSystems announced that the national co-principal investigators of the company’s DANCE trial each presented...
HeartFlow FFRct Analysis, NICE guidance, U.K., United Kingdom, guidelines, stable chest pain
News | CT Angiography (CTA)| February 14, 2017
The National Institute for Health and Care Excellence (NICE) in the United Kingdom recently issued guidance for use of...
Medtronic, IDE approval, IN.PACT Admiral drug-coated balloon, DCB, end-stage renal disease
News | Drug-Eluting Balloons| February 08, 2017
Medtronic plc announced receipt of an investigational device exemption (IDE) from the U.S. Food and Drug Administration...
CSI, LIBERTY 360 Study, ISET 2017, six-month data, lower extremity PAD
News | Atherectomy Devices| February 08, 2017
February 8, 2017 — Cardiovascular Systems (CSI) presented six-month data from its LIBERTY 360° post-market study in a
Penn Medicine, heart failure causes, YAP and TAZ proteins, Journal of Clinical Investigation study
News | Heart Failure| February 07, 2017
February 7, 2017 — Of the more than 700,000 Americans who suffer a heart attack each year, about a quarter go on to d
Avinger, VISION Study, two-year outcomes, LINC, Lumivascular technology, Pantheris, OCT-guided atherectomy
News | Atherectomy Devices| February 03, 2017
Avinger Inc. recently announced positive two-year clinical data from the pivotal VISION study of the company’s...
Texas Heart Institute, ischemic heart failure, adult stem cell therapy, CONCERT-HF clinical trial
News | Stem Cell Therapies| February 03, 2017
Physicians and researchers at Texas Heart Institute are recruiting patients who suffer from heart failure to...
Ohio State, Wexner Medical Center, keeping human hearts alive, track abnormal beats, reanimate, Vadim Fedorov

Part of a donated human heart is reanimated and recorded with four high-definition optic cameras in a laboratory at The Ohio State University Wexner Medical Center. Researchers keep the heart tissue alive to look for the causes of irregular heartbeats in cases of persistent atrial fibrillation. Image courtesy of The Ohio State University Wexner Medical Center.

News | EP Lab| February 01, 2017
Researchers have developed a technique that allows them to revive parts of human hearts in the laboratory for up to 12...
CT, computed tomography, IV contrast media, acute kidney injury risk, Annals of Emergency Medicine study

A new study in Annals of Emergency Medicine finds no association between intravenous contrast media used in computed tomography (CT) and kidney damage. Roughly 80 million doses of IV contrast media are given every year. Credit: American College of Emergency Physicians

News | Contrast Media| January 30, 2017
Intravenous contrast media (typically iohexol or iodixanol) used in computed tomography (CT) does not appear to be...
Overlay Init